首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

2.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

3.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

4.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

5.
The avid binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is crucial for the regulation of pericellular and extracellular proteolysis. The interactions of the catalytic domain (cd) of MMP-1 with the inhibitory domains of TIMP-1 and TIMP-2 (N-TIMPs) and MMP-3cd with N-TIMP-2 have been characterized by isothermal titration calorimetry and compared with published data for the N-TIMP-1/MMP-3cd interaction. All interactions are largely driven by increases in entropy but there are significant differences in the profiles for the interactions of both N-TIMPs with MMP-1cd as compared with MMP-3cd; the enthalpy change ranges from small for MMP-1cd to highly unfavorable for MMP-3cd (-0.1 ± 0.7 versus 6.0 ± 0.5 kcal mol(-1)). The heat capacity change (ΔC(p)) of binding to MMP-1cd (temperature dependence of ΔH) is large and negative (-210 ± 20 cal K(-1) mol(-1)), indicating a large hydrophobic contribution, whereas the ΔC(p) values for the binding to MMP-3cd are much smaller (-53 ± 3 cal K(-1) mol(-1)), and some of the entropy increase may arise from increased conformational entropy. Apart from differences in ionization effects, it appears that the properties of the MMP may have a predominant influence in the thermodynamic profiles for these N-TIMP/MMP interactions.  相似文献   

6.
Atrolysin C is a P-I snake venom metalloproteinase (SVMP) from Crotalus atrox venom, which efficiently degrades capillary basement membranes, extracellular matrix, and cell surface proteins to produce hemorrhage. The tissue inhibitors of metalloproteinases (TIMPs) are effective inhibitors of matrix metalloproteinases which share some structural similarity with the SVMPs. In this work, we evaluated the inhibitory profile of TIMP-1, TIMP-2, and the N-terminal domain of TIMP-3 (N-TIMP-3) on the proteolytic activity of atrolysin C and analyzed the structural requirements and molecular basis of inhibitor-enzyme interaction using molecular modeling. While TIMP-1 and TIMP-2 had no inhibitory activity upon atrolysin C, the N-terminal domain of TIMP-3 (N-TIMP-3) was a potent inhibitor with a K(i) value of approximately 150nM. The predicted docking structures of atrolysin C and TIMPs were submitted to molecular dynamics simulations and the complex atrolysin C/N-TIMP-3 was the only one that maintained the inhibitory conformation. This study is the first to shed light on the structural determinants required for the interaction between a SVMP and a TIMP, and suggests a structural basis for TIMP-3 inhibitory action and related proteins such as the ADAMs.  相似文献   

7.
TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-α converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 Å resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.  相似文献   

8.
Wei S  Xie Z  Filenova E  Brew K 《Biochemistry》2003,42(42):12200-12207
The four tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that regulate the activity of matrix metalloproteinases (MMPs) and certain disintegrin and metalloproteinase (ADAM) family proteases in mammals. The protease inhibitory activity is present in the N-terminal domains of TIMPs (N-TIMPs). In this work, the N-terminal inhibitory domain of the only TIMP produced by Drosophila (dN-TIMP) was expressed in Escherichia coli and folded in vitro. The purified recombinant protein is a potent inhibitor of human MMPs, including membrane-type 1-MMP, although it lacks a disulfide bond that is conserved in all other known N-TIMPs. Titration with the catalytic domain of human MMP-3 [MMP-3(DeltaC)] showed that dN-TIMP prepared by this method is correctly folded and fully active. dN-TIMP also inhibits, in vitro, the activity of the only two MMPs of Drosophila, dm1- and dm2-MMPs, indicating that the Drosophila TIMP is an endogenous inhibitor of the Drosophila MMPs. dN-TIMP resembles mammalian N-TIMP-3 in strongly inhibiting human tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) but is a weak inhibitor of human ADAM10. Models of the structures of dN-TIMP and N-TIMP-3 are strikingly similar in surface charge distribution, which may explain their functional similarity. Although the gene duplication events that led to the evolutionary development of the four mammalian TIMPs might be expected to be associated with functional specialization, Timp-3 appears to have conserved most of the functions of the ancestral TIMP gene.  相似文献   

9.
Residues 1-127 of human TIMP-2 (N-TIMP-2), comprising three of the disulfide-bonded loops of the TIMP-2 molecule, is a discrete protein domain that folds independently of the C-terminal domain. This domain has been shown to be necessary and sufficient for metalloproteinase inhibition and contains the major sites of interaction with the catalytic N-terminal domain of active matrix metalloproteinases (MMPs). Residues identified as being involved in the interaction with MMPs by NMR chemical shift perturbation studies and TIMP/MMP crystal structures have been altered by site-directed mutagenesis. We show, by measurement of association rates and apparent inhibition constants, that the specificity of these N-TIMP-2 mutants for a range of MMPs can be altered by single site mutations in either the TIMP "ridge" (Cys1-Cys3 and Ser68-Cys72) or the flexible AB loop (Ser31-Ile41). This work demonstrates that it is possible to engineer TIMPs with altered specificity and suggests that this form of protein engineering may be useful in the treatment of diseases such as arthritis and cancer where the selective inhibition of key MMPs is desirable.  相似文献   

10.
The balance between matrix metalloproteinases (MMPs) and their physiological tissue inhibitors of matrix metalloproteinases (TIMPs) is crucial in tumour invasion and progression. The aim of this study was to investigate the levels of MMP-9, MMP-3 and TIMP-1 in colorectal cancer (CRC) and to evaluate these proteinases and their inhibitor with respect to clinicopathological variables. Activities of pro- and active MMP-9 were measured in paired tumour and distant normal tissue specimens from 43 patients with CRC using gelatin zymography. ELISA was employed for the determination of MMP-9, MMP-3 and TIMP-1 protein expressions. The activity levels of pro- and active MMP-9 and protein expression levels of MMP-9, MMP-3 and TIMP-1 were higher in tumour tissues than in the corresponding normal tissues; the differences being significant for all (p < 0.05), except TIMP-1. Similarly, active MMP-9/proMMP-9 and the ratio of protein expression level of MMP-9-TIMP-1 were found to be significantly higher in tumour tissues ( p < 0.01). Among all the clinicopathological variables investigated, significant correlations were found between MMP-9 and presence of perineural invasion, MMP-3 and lymph node status, TIMP-1 and tumour differentiation, MMP-9/TIMP-1 ratio and histological types ( p < 0.05). In conclusion, MMP-3 was not as notably increased as MMP-9 in tumour tissues. However, different roles may be attributed to MMP-9 and MMP-3 in CRC development and progression. Additionally, assessment of TIMP-1 in relation to MMPs appeared to be crucial in CRC studies to provide a basis for the re-evaluation of the clinical usefulness of TIMP-1 in colorectal cancer.  相似文献   

11.
M Farr  M Pieper  J Calvete  H Tschesche 《Biochemistry》1999,38(22):7332-7338
Tissue inhibitors of metalloproteinases (TIMPs) are the physiological, specific inhibitors of matrix metalloproteinases (MMPs) forming tight, noncovalent complexes. Therefore they control the proteolytic activity of MMPs toward the extracellular matrix. To analyze the inhibition of the "activated" and "superactivated" variants of human neutrophil collagenase (MMP-8) by TIMP-2, we determined complex dissociation constants using biomolecular interaction analysis (BIA). As it is known that the association rate constants can exceed the limits of the BIA instruments, the biomolecular interaction analysis was used to examine the equlibrium situation. The dissociation constants were determined by fitting the parameters of the mathematical term for the binding of collagenase onto the TIMP-coupled sensor chip surface to the saturation curve derived from individual sensorgrams. The resulting values are in the nanomolar range and correlate with the results of fluorescence kinetics. These data reveal that TIMP-2 (the recombinant inhibitory domain of human TIMP-2 and bovine TIMP-2 isolated from seminal plama) is a better inhibitor of the activated neutrophil collagenase than of the superactivated variant (the recombinant catalytic domain of human MMP-8). It has been demonstrated by X-ray analysis that the N-terminal heptapeptide only of superactivated MMP-8 is attached by a salt bridge and hydrophobic interaction to the C-terminal helix. Because these interactions have to be disrupted in the complex formation with TIMP we assume that the activated variant enables higher flexibility and a tighter induced fit in the complex formation. Therefore superactivation of MMP-8 correlates with weaker inhibition by TIMP-2.  相似文献   

12.
13.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

14.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

15.
The tissue inhibitors of metalloproteinases (TIMPs) are a family of four secreted inhibitors of matrix metalloproteinases (MMPs). Recently, additional functions have been attributed to the TIMPs, including cell growth and inhibition of angiogenesis. In particular, we demonstrated that TIMP-3 overexpression using gene transfer induces apoptosis in a variety of cell types and can inhibit vascular neointima formation in vivo. However, little is know about the mechanisms underlying TIMP-3-mediated apoptosis. Here, using both purified recombinant proteins and novel adenoviral vectors we demonstrate that the prodeath domain of TIMP-3 is located within the N-terminal three loops of TIMP-3. Although both wild type and N-terminal TIMP-3 proteins promoted apoptosis, a T-2/T-3 chimera, in which the N-terminal three loops of TIMP-3 are replaced by those of TIMP-2, failed to induce cell death. Furthermore, a point mutation at residue 1 of TIMP-3 totally abolished MMP-inhibitory activity of TIMP-3 and also failed to promote apoptosis. This study demonstrates, using multiple apoptosis assays, that the prodeath function of TIMP-3 is located within the N-terminal three loops and the presence of functional metalloproteinase-inhibitory activity is associated with the induction of apoptosis.  相似文献   

16.
Arumugam S  Van Doren SR 《Biochemistry》2003,42(26):7950-7958
Crystal structures of catalytic domains of MMP-3 and MT1-MMP bound to TIMP-1 or TIMP-2, respectively, differ in the orientation of the TIMP in the MMP active site. The orientation in solution of N-TIMP-1 in the MMP-3 active site has been investigated using residual dipolar couplings (RDCs). Fitting of the RDCs to the X-ray structures of the complexes suggests general agreement with the orientation of crystalline MMP-3(DeltaC) and TIMP-1 and a large disparity from the orientation of crystalline MT1-MMP(DeltaC) and TIMP-2. Rigid body docking of MMP-3 and N-TIMP-1 X-ray coordinates using RDCs and intermolecular NOEs provided a time-averaged orientation in solution differing from the crystal structure by a 5 degrees rotation toward the MT1-MMP(DeltaC)/TIMP-2 orientation. The slight discrepancy in orientations in solution and crystal lies within the experimental uncertainties. Intermolecular NOEs used in the docking corroborated the accuracy of mapping the interface by a paramagnetic NMR footprinting assay, a potential alternative source of contacts for docking. Some uncertainty in the N-TIMP-1 orientation in the MMP-3 active site, coupled with microsecond to millisecond fluctuations of the MMP-binding ridge of N-TIMP-1 in the complex and flexibility in MMP-3(DeltaC) S(1)' to S(3)' subsites, leaves open the possibility that N-TIMP-1 might dynamically pivot a few degrees or more in the arc toward the MT1-MMP(DeltaC)/TIMP-2 orientation. Differing TIMP orientations in MMP active sites are more likely to result from structural differences in TIMP AB hairpin loops than from crystal packing artifacts.  相似文献   

17.
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.  相似文献   

18.
The high-affinity binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is essential for regulation of the turnover of the extracellular matrix during development, wound healing, and progression of inflammatory diseases, such as cancer, atherosclerosis, and arthritis. Bacterially expressed N-terminal inhibitory domains of TIMPs (N-TIMPs) have been used extensively for biochemical and biophysical study of interactions with MMPs. Titration of N-TIMP-1 expressed in E. coli indicates, however, that only about 42% of the protein is active as an MMP inhibitor. The separation of inactive from fully active N-TIMP-1 has been achieved both by MMP affinity and by high-resolution cation exchange chromatography at an appropriate pH, based on a slight difference of charge. Purification by cation exchange chromatography with a Mono S column enriches the active portion of N-TIMP-1 to >95%, with K(i) of 1.5 nM for MMP-12. Mass spectra reveal that the inactive form differs from active N-TIMP-1 in being N-terminally acetylated, underscoring the importance of the free alpha-NH(2) of Cys1 for MMP inhibition. N(alpha)-acetylation of the CTCVPP sequence broadens the N-terminal sequence motifs reported to be susceptible to alpha-amino acetylation by E. coli N-acetyl transferases. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 960-968, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

19.
The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue remodeling. Human fibroblast collagenase (MMP-1) was the first vertebrate collagenase purified as a protein and cloned as a cDNA, and is considered the prototype for all the interstitial collagenases. It is synthesized as a zymogen where N-terminal residues are removed by proteolysis and shares with other MMPs a catalytic domain and a carboxy terminal domain with sequence similarity to hemopexin. Importantly, MMP-1 should be considered a multifunctional molecule since it participates not only in the turnover of collagen fibrils in the extracellular space but also in the cleavage of a number of non-matrix substrates and cell surface molecules suggesting a role in the regulation of cellular behaviour. Furthermore, an extensive body of evidence indicates that MMP-1 plays an important role in diverse physiologic processes such as development, tissue morphogenesis, and wound repair. Likewise, it seems to be implicated in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders, suggesting that its inhibition or stimulation may open therapeutic avenues.  相似文献   

20.
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号