首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Model refinement calculations utilizing the results from time-resolved x-ray diffraction studies indicate that specific, large-scale changes (i.e., structural changes over a large length scale or long range) occur throughout the cylindrically averaged profile structure of the sarcoplasmic reticulum ATPase upon its phosphorylation during calcium active transport. Several physical-chemical factors, all of which slow the kinetics of phosphoenzyme formation, induce specific, large-scale changes throughout the profile structure of the unphosphorylated enzyme that in general are opposite to those observed upon phosphorylation. These results suggest that such large-scale structural changes in the ATPase occurring upon its phosphorylation are required for its calcium transport function.  相似文献   

2.
Under certain conditions of Ca2+ loading, cardiac myocytes, both isolated and in intact tissue, exhibit spontaneous, oscillatory Ca2+ transients due to Ca2+ release from the sarcoplasmic reticulum. These transients are not triggered by depolarization of the sarcolemma, though they themselves can generate depolarizing currents which can reach threshold to trigger an action potential. Spontaneous Ca2+ release occurs locally in a subcellular region and, once initiated, can propagate through the cell with a velocity of roughly 100 microns/s. Locally, the cytosolic Ca2+ concentration during spontaneous release is probably comparable to that during an electrically excited twitch. The mechanisms of initiation and propagation of spontaneous Ca2+ release are uncertain, but are probably closely related to the Ca2+-induced Ca2+ release which plays a role in normal excitation-contraction coupling. Spontaneous and triggered Ca2+ release appear to compete for a common pool of releasable sarcoplasmic reticulum Ca2+, with the result that spontaneous Ca2+ release imposes a beat-rate-dependent limit on the inotropic effect of interventions which increase intracellular Ca2+. Mathematical modeling of this effect shows that it can also explain increased diastolic tone, the development of aftercontractions and oscillatory restitution of contractility in states of 'Ca2+ overload'. Spontaneous Ca2+ release is a cause of arrhythmias, and may well play a role in some cases of systolic and diastolic myocardial dysfunction.  相似文献   

3.
It is known that inositol (1, 4, 5)-trisphosphate (IP3) stimulates Ca2+ release from sarcoplasmic reticulum (SR) in several tissues, but in cardiac myocytes this phenomenon has not been confirmed. The purpose of the present study was to confirm the effect of (1, 4, 5)-IP3 on Ca2+ release from SR in cardiac myocytes. The effect of IP3 on Ca2+ release from SR in hypertrophic cardiac cells was also determined.We examined the effects of IP3 on Ca2+ release from cardiac myocyte SR by the bigital-image method in a single cell. We also determined the effect of IP3 on calcium release from isolated SR. SR was prepared from spontaneous hypertensive rat hearts and Wistar kyoto rat hearts. The SR was prelabeled with45Ca2+, and then incubated with the indicated concentrations of IP3 for 1 min at 37°C. In cardiac myocytes treated with saponin, Ca2+ release stimulated by 10 M (1, 4, 5)-IP3 was detected by fura-2. In45Ca2+ prelabeled SR, the maximal Ca2+ release was achieved at 10 M IP3 incubated for 1 min. The release of Ca2+ was higher in Sr of SHR than in the SR of WKY. IP3 stimulates Ca2+ release from cardiac SR, and this release is greater in SHR than in WKY. However, it is uncertain whether this phenomenon plays a role in cardiac hypertrophy.  相似文献   

4.
A cytosolic protein fraction, termed CPF-I, derived by (NH4)2 SO4 fractionation of rabbit heart cytosol caused marked inhibition (up to 95%) of ATP-dependent Ca2+ uptake by cardiac sarcoplasmic reticulum. The inhibitory effect of CPF-I was concentration-dependent (50% inhibition with ~ 80–100 μg CPF-I) and heat labile. The inhibitor reduced the velocity of Ca2+ uptake without altering the apparent affinity of the transport system for Ca2+. Concomitant with the inhibition of Ca2+ uptake, Ca2+-sensitive ATP hydrolysis was also inhibited by CPF-I. The inhibitor did not cause release of Ca2+ from Ca2+-preloaded membrane vesicles. The inhibitor activity of CPF-I could be adsorbed to a DEAE cellulose column and could be eluted with a linear gradient of KCl. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum calcium pump in cardiac muscle and raises the intriguing possibility of its participation in the regulation of calcium pump invivo.  相似文献   

5.
Sarcoplasmic reticulum vesicles isolated from fast-twitch frog skeletal muscle presented two classes of binding sites for ryanodine, one of high affinity (Kd1 = 1.7 nM, Bmax1 = 3.3 pmol per mg) and a second class with lower affinity (Kd2 = 90 nM, Bmax2 = 7.0 pmol per milligram). The calcium channels present in the sarcoplasmic reticulum membranes were studied in vesicles fused into lipid bilayers. Low concentrations of ryanodine (5 to 10 nM) activated a large conductance calcium channel after a short delay (5 to 10 min). The activation, which could be elicited from conditions of high or low fractional open time, was characterized by an increase in channel fractional open time without a change in conductance. The open and closed dwell time distributions were fitted with the sum of two exponentials in the range of 4 to 800 ms. The activating effect of ryanodine was due to an increase of both open time constants and a concomitant decrease in the closed time constants. Under conditions of low fractional open time (less than 0.1), the time spent in long closed periods (greater than 800 ms) between bursts was not affected by ryanodine. Higher concentrations of ryanodine (250 nM) locked the channel in a lower conductance level (approximately 40%) with a fractional open time near unity. These results suggest that the activating effects of nanomolar concentrations of ryanodine may arise from drug binding to high affinity sites. The expression of the lower conductance state obtained with higher concentrations of ryanodine may be associated with the low affinity binding sites observed in frog sarcoplasmic reticulum.  相似文献   

6.
Time-resolved measurements of currents generated by Ca-ATPase from fragmented sarcoplasmic reticulum (SR) are described. SR vesicles spontaneously adsorb to a black lipid membrane acting as a capacitive electrode. Charge translocation by the enzyme is initiated by an ATP concentration jump performed by the light-induced conversion of an inactive precursor (caged ATP) to ATP with a time constant of 2.0 ms at pH 6.2 and 24 degrees C. The shape of the current signal is triphasic, an initial current flow into the vesicle lumen is followed by an outward current and a second slow inward current. The time course of the current signal can be described by five relaxation rate constants, lambda1 to lambda5 plus a fixed delay D approximately 1-3 ms. The electrical signal shows that 1) the reaction cycle of the Ca-ATPase contains two electrogenic steps; 2) positive charge is moved toward the luminal side in the first rapid step and toward the cytoplasmic side in the second slow step; 3) at least one electroneutral reaction precedes the electrogenic steps. Relaxation rate constant lambda3 reflects ATP binding, with lambda(3,max) approximately 100 s(-1). This step is electroneutral. Comparison with the kinetics of the reaction cycle shows that the first electrogenic step (inward current) occurs before the decay of E2P. Candidates are the formation of phosphoenzyme from E1ATP (lambda2 approximately 200 s[-1]) and the E1P --> E2P transition (D approximately 1 ms or lambda1 approximately 300 s[-1]). The second electrogenic transition (outward current) follows the formation of E2P (lambda4 approximately 3 s[-1]) and is tentatively assigned to H+ countertransport after the dissociation of Ca2+. Quenched flow experiments performed under the conditions of the electrical measurements 1) demonstrate competition by caged ATP for ATP-dependent phosphoenzyme formation and 2) yield a rate constant for phosphoenzyme formation of 200 s(-1). These results indicate that ATP and caged ATP compete for the substrate binding site, as suggested by the ATP dependence of lambda3 and favor correlation of lambda2 with phosphoenzyme formation.  相似文献   

7.
J M Lamers  J T Stinis 《Life sciences》1979,24(25):2313-2319
To evaluate Ca2+-uptake in sarcoplasmic reticulum in the hypertrophied rabbit heart, microsomes were prepared from myocardium of rabbits with experimentally induced aortic stenosis. A significant reduction of microsomal Ca2+-uptake was observed in hypertrophied left ventricle, 195±10 compared to 280±18 nmol/mg found in control animals. A similar pattern was observed for the Ca2+-stimulated ATPase (30±9 and 59±10 nmol/min/mg resp.). A minimal activity difference of the microsomal marker enzyme rotenone-insensitive NADPH cyt. c reductase was found (7.77±0.05 and 8.17±0.11 nmol/min/mg resp.). The specific activity of the latter enzyme was 5–6 fold increased in microsomes compared to homogenates in both animal groups, which excludes the possibility of increased amounts of contaminant or nonfunctional protein in sarcoplasmic reticulum prepared from hypertrophied myocardium. In addition the yield of microsomal protein did not differ significantly. Maximal phosphorylation by exogenous cyclic AMP and protein kinase increased Ca2+-uptake in both microsomal preparations (to 287±27 and 375±26 nmol/mg resp. for hypertrophied and control hearts), but Ca2+-transport rate found in pathological hearts remained lower than in controls. These findings indicate that impairment of Ca2+-metabolism in the hypertrophied heart is based on a defective Ca2+-pump.  相似文献   

8.
Cut fibers from Rana temporaria and Rana pipiens (striation spacing, 3.9-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14 degrees C. The Ca indicator purpurate-3,3' diacetic acid (PDAA) was introduced into the end pools and allowed to diffuse into the optical recording site. When the concentration at the site exceeded 2 mM, step depolarizations to 10 mV were applied and the [Ca] transient measured with PDAA was used to estimate Ca release from the sarcoplasmic reticulum (SR) (Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1983. Journal of Physiology. 344:625-666). With depolarization, the rate of SR Ca release increased to an early peak and then rapidly decreased several-fold to a quasi-steady level. The total amount of Ca released from the SR at the time of peak rate of release appeared to be independent of SR Ca content, consistent with the idea that a single activated channel might pass, on average, a fixed number of ions, independent of the magnitude of the single channel flux. A possible explanation of this property is given in terms of locally induced Ca inactivation of Ca release. The solution in the end pools was then changed to one with PDAA plus fura-2. SR Ca release was estimated from the [Ca] transient, as before, and from the delta [Cafura-2] signal. On average, 2-3 mM fura-2 increased the quasi-steady level of the rate of SR Ca release by factors of 6.6 and 3.8, respectively, in three fibers from Rana temporaria and three fibers from Rana pipiens. The peak rate of release was increased in five of the six fibers but to a lesser extent than the quasi-steady level. In all fibers, the amplitude of the free [Ca] transient was markedly reduced. These increases in the rate of SR Ca release are consistent with the idea that Ca inactivation of Ca release develops during a step depolarization to 10 mV and that 2-3 mM fura-2 is able to reduce this inactivation by complexing Ca and thereby reducing free [Ca]. Once the concentration of fura-2 becomes sufficiently large, a further increase reduces the rate of SR Ca release. On average, 5-6 mM fura-2 increased the quasi-steady rate of release, compared with 0 mM fura-2, by 6.5 and 2.9, respectively, in four fibers from Rana temporaria and three from Rana pipiens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Ryanodine is a specific ligand for the calcium release channel which mediates calcium release in excitation-contraction coupling in muscle. In this study, ryanodine binding in sarcoplasmic reticulum from heart muscle and skeletal muscle is further compared and correlated with function. The new findings include the following: (1) Two types of binding, high affinity (KD1 approximately 5-10 nM) and low affinity (KD2 approximately 3 microM), can now be discerned for the skeletal muscle receptor. KD1 is approximately the same as and KD2 of similar magnitude to that previously reported for heart. (2) The dissociation rates for the high-affinity binding have been directly measured for both heart and skeletal muscle (t1/2 approximately 30-40 min). These rates are more rapid than previously reported (t1/2 approximately 14 h). (3) KD1's obtained from the ratio of the dissociation and association rate constants agree with the dissociation constant measured by equilibrium binding Scatchard analysis. (4) Ryanodine binding to the low-affinity site can be correlated with a decrease in the dissociation rate constant (k-1) of the high-affinity site, and thereby in the apparent dissociation constant (KD1). The inhibition constant (KI) for inhibiting the high-affinity off rate obtained from a double-reciprocal plot of the change in off rate vs [ryanodine] is practically the same in heart (0.66 microM) and skeletal muscle (0.64 microM) and in the range of the KD2. The binding of cold ryanodine to the low-affinity site appears to lock the bound [3H]ryanodine onto the high-affinity site rather than to exchange with it. Thus, in this sense, the ryanodine receptor exhibits "positive cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Lipid deprivation of the sarcoplasmic reticulum calcium-transport ATPase neither affects the enzyme's affinity for ATP nor that of calcium. In contrast, vanadate binding is almost completely abolished. Lipid substitution by oleic acid which at a ratio of 0.3 mg/mg protein completely reactivates the calcium-dependent ATP hydrolysis restores vanadate binding. Concomitantly the mutual interactions between vanadate and calcium or ATP and ADP, respectively are restored. The vanadate-induced disappearance of the enzyme's ATP binding sites as well as its high-affinity binding sites for calcium follow the same time course. Conversely, the displacement of vanadate by calcium proceeds in parallel with the recovery of ADP binding. In lipid-restituted preparations as well as in native membranes vanadate induces the disappearance of external high-affinity and simultaneously the appearance of internal low-affinity calcium binding sites.  相似文献   

12.
13.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

14.
Summary We present a model for predicting the temporal and spatial dependence of [Ca] in the cardiac subsarcolemmal diadic region (cleft), following Ca release from the feet of the sarcoplasmic reticulum. This region is modeled as a disc 10 nm thick, 430 nm in radius, with or without Ca binding sites and open at its periphery to the cytosol. [Ca] is computed for three diffusion coefficients (100, 20 and 4% of aqueous diffusion), following release of a 20-msec square pulse sufficient to produce 50% maximal contractile force, or repetitive release (400/min) of such pulses. Numerical solutions are obtained for the general diffusion/binding problem and analytic solutions for the case of no binding sites. For the middle value of diffusion coefficient, and in the absence of binding sites, [Ca] rises to 1.5 mm in 20-msec and then falls to 0.1 m in < 3 msec. Adding binding sites reduces peak [Ca] to 0.6 mm but prolongs its decline, requiring 200 msec to reach 20 m. For repetitive release [Ca] is > 100 m for roughly half of each cycle. Two major implications of the predicted [Ca] are: (i) The effect of Ca binding sites on [Ca] will cause Ca efflux from the cleft via the NaCa exchanger (K m (Ca) 20 m) to continue at a significant level for > 200 msec, (ii) The time constant for inactivation of release from the feet must be much greater than for activation if Cainduced Ca release is to continue for > 1–2 msec.  相似文献   

15.
In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplasmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (less than 100 micrograms/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28-50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (greater than 100 micrograms/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20-200 micrograms/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The sarcoplasmic reticulum calcium ATPase SERCA2b is an alternate isoform encoded by the SERCA2 gene. SERCA2b is expressed ubiquitously and has a higher Ca(2+) affinity compared with SERCA2a. We made transgenic mice that overexpress the rat SERCA2b cDNA in the heart. SERCA2b mRNA level was approximately approximately 20-fold higher than endogenous SERCA2b mRNA in transgenic hearts. SERCA2b protein was increased 8-10-fold in the heart, whereas SERCA2a mRNA/protein level remained unchanged. Confocal microscopy showed that SERCA2b is localized preferentially around the T-tubules of the SR, whereas SERCA2a isoform is distributed both transversely and longitudinally in the SR membrane. Calcium-dependent calcium uptake measurements showed that the maximal velocity of Ca(2+) uptake was not changed, but the apparent pump affinity for Ca(2+) (K(0.5)) was increased in SERCA2b transgenic mice (0.199 +/- 0.011 micrometer) compared with wild-type control mice (0.269 +/- 0.012 micrometer, p < 0.01). Work-performing heart preparations showed that SERCA2b transgenic hearts had a higher rates of contraction and relaxation, shorter time to peak pressure and half-time for relaxation than wild-type hearts. These data show that SERCA2b is associated in a subcompartment within the sarcoplasmic reticulum of cardiac myocytes. Overexpression of SERCA2b leads to an increase in SR calcium transport function and increased cardiac contractility, suggesting that SERCA2b plays a highly specialized role in regulating the beat-to-beat contraction of the heart.  相似文献   

17.
Mechanically skinned skeletal muscle fibres of the crab Carcinus maenas have been used to investigate the mechanism of calcium release from the sarcoplasmic reticulum. Calcium release has been monitored by the amplitude and kinetics of the tension developed by the fibre. Results show that a very low calcium concentration, insufficient to directly activate contractile proteins, induces a release of calcium from the SR. This release is stimulated by low concentrations of caffeine and inhibited by small amounts of EGTA. Thus, a graded calcium-induced calcium release mechanism dependent on extrareticular calcium concentration has been demonstrated in skinned crab muscle fibre.  相似文献   

18.
Ca2+ release from heavy sarcoplasmic reticulum (SR) vesicles was induced by 2 mM caffeine, and the amount (A) and the rate constant (k) of Ca2+ release were investigated as a function of the extent of Ca2+ loading. Under both passive and active loading conditions, the A value increased monotonically in parallel to Ca2+ loading. On the other hand, k sharply increased at partial Ca2+ loading, and upon further loading, it decreased to a lower level. Since most of the intravesicular calcium appears to be bound to calsequestrin both under passive and under active loading conditions, these results suggest that the kinetic properties of induced Ca2+ release show significant variation depending upon how much calcium has been bound to calsequestrin at the time of the induction of Ca2+ release. An SR membrane segment consisting of the junctional face membrane (jfm) and attached calsequestrin (jfm-calsequestrin complex) was prepared. The covalently reacting thiol-specific conformational probe N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide (DACM) was incorporated into several proteins of the jfm, but not into calsequestrin. The fluorescence intensity of DACM increased with Ca2+. Upon dissociation of calsequestrin from the jfm by salt treatment, the DACM fluorescence change was abolished, while upon reassociation of calsequestrin by dilution of the salt it was partially restored. These results suggest that the events occurring in the jfm proteins are mediated via the attached calsequestrin rather than by a direct effect of Ca2+ on the jfm proteins. We propose that the [Ca2+]-dependent conformational changes of calsequestrin affect the jfm proteins and in turn regulate the Ca2+ channel functions.  相似文献   

19.
20.
M le Maire 《Biochimie》1986,68(3):395-400
The organization of polypeptide chains in the membrane has attracted widespread interest. This is particularly true for transport proteins: indeed, the existence of a quaternary structure may obviously have important implications for the mechanism of solute transport through the membrane. The problem arises from the fact that it is extremely difficult to demonstrate unambiguously that a protein is truly oligomeric in the membrane. In this paper various techniques are considered, either direct methods of investigation such as X-ray or neutron scattering, ESR, and radiation inactivation, or indirect methods (primarily the solubilization of the protein by non-denaturing detergents). In very few cases the existence of a 'structural' oligomer has been demonstrated. However, the question remains whether the oligomer also has a functional role, i.e., is it directly necessary for example to form a hydrophilic pathway for an ion, or indirectly to stabilize the enzyme structure or to allow a control to take place at a certain defined step of the transport cycle?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号