首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mexico and Central America are among the most biodiverse regions on Earth, harboring many species with high levels of interpopulation morphological and genetic diversity. The mountainous topography of this region contains isolated sky island habitats that have the potential to promote speciation. This has been studied in vertebrates, yet few studies have examined the phylogeographic and genetic structure of insect species encompassing this region. Here we investigate geographic patterns of genetic and morphological divergence and speciation among widespread populations of the highly polymorphic bumble bee Bombus ephippiatus and its closest relative B. wilmattae. We used DNA sequences from a fragment of cytochrome oxidase I (COI), genotypes for twelve microsatellite markers, and morphometric data from wings to construct a well-supported inference of the divergences among these taxa. We have found complex patterns of genetic isolation and morphological divergence within B. ephippiatus across its geographic range and present evidence that B. ephippiatus comprises multiple independent evolutionary lineages. The pattern of their diversification corresponds to geographic and environmental isolating mechanisms, including the Mexican highlands, the lowlands of the Isthmus of Tehuantepec in southern Mexico, the Nicaraguan Depression, the patchily distributed volcanic ranges in Nuclear Central America and Pleistocene glacial cycles. These results have important implications for the development and distribution of B. ephippiatus as a commercial pollinator in Mexico and Central America.  相似文献   

2.
Aim  We used inferences of phylogenetic relationships and divergence times for three lineages of highland pitvipers to identify broad-scale historical events that have shaped the evolutionary history of Middle American highland taxa, and to test previous hypotheses of Neotropical speciation.
Location  Middle America (Central America and Mexico).
Methods  We used 2306 base pairs of mitochondrial gene sequences from 178 individuals to estimate the phylogeny and divergence times of New World pitviper lineages, focusing on three genera ( Atropoides , Bothriechis and Cerrophidion ) that are broadly co-distributed across Middle American highlands.
Results  We found strong correspondence across three highland lineages for temporally and geographically coincident divergences in the Miocene and Pliocene, and further identified widespread within-species divergences across multiple lineages that occurred in the early–middle Pleistocene.
Main conclusions  Available data suggest that there were at least three major historical events in Middle America that had broad impacts on species divergence and lineage diversification among highland taxa. In addition, we find widespread within-species genetic structure that may be attributable to the climatic changes that affected gene flow among highland taxa during the middle–late Pleistocene.  相似文献   

3.
Bumble bees (Bombus) are a cold-adapted, largely alpine group that can elucidate patterns of Holarctic historical biogeography, particularly in comparison to the alpine plants with which they likely coevolved. A recently published molecular phylogeny of bumble bees provides uniquely comprehensive species sampling for exploring historical patterns of distribution and diversification. Using this phylogeny and detailed data on extant distributions, I reconstruct the historical distribution of bumble bees in a temporal framework, estimating divergence times using fossil data and molecular rates derived from the literature. The nearly comprehensive phylogeny allows assessment of the tempo of diversification within the bumble bees using lineage-through-time plots and diversification statistics, which have been performed with special consideration to confidence intervals. These analyses reveal movements of Bombus concordant with geographic and climatic events of the late Cenozoic. The initial diversification of extant bumble bee lineages was estimated at around 25 to 40 Ma, near the Eocene-Oligocene boundary 34 Ma, a period of dramatic global cooling. Dispersal-vicariance analysis (DIVA) predicted an Old World Bombus ancestor, with early diversification events largely restricted to the eastern Old World. The numerous intercontinental dispersal events occurred mostly in the direction of Old World to New World and North America to South America. Early movements from the Palearctic into the Nearctic most likely took place after 20 Ma and may have coincided with a period of Miocene cooling that gave rise to taiga habitat across Beringia. Subsequent dispersal between these regions is estimated to have occurred among boreal and tundra-adapted species mostly in the last 5 million years. Radiations are estimated in both Nearctic and Neotropical regions at approximately 6 to 8 Ma and after 3.5 Ma, concordant with the opening of land corridors between the continents.  相似文献   

4.
The wild common bean (Phaseolus vulgaris) is widely but discontinuously distributed from northern Mexico to northern Argentina on both sides of the Isthmus of Panama. Little is known on how the species has reached its current disjunct distribution. In this research, chloroplast DNA polymorphisms in seven non-coding regions were used to study the history of migration of wild P. vulgaris between Mesoamerica and South America. A penalized likelihood analysis was applied to previously published Leguminosae ITS data to estimate divergence times between P. vulgaris and its sister taxa from Mesoamerica, and divergence times of populations within P. vulgaris. Fourteen chloroplast haplotypes were identified by PCR-RFLP and their geographical associations were studied by means of a Nested Clade Analysis and Mantel Tests. The results suggest that the haplotypes are not randomly distributed but occupy discrete parts of the geographic range of the species. The current distribution of haplotypes may be explained by isolation by distance and by at least two migration events between Mesoamerica and South America: one from Mesoamerica to South America and another one from northern South America to Mesoamerica. Age estimates place the divergence of P. vulgaris from its sister taxa from Mesoamerica at or before 1.3 Ma, and divergence of populations from Ecuador-northern Peru at or before 0.6 Ma. As these ages are taken as minimum divergence times, the influence of past events, such as the closure of the Isthmus of Panama and the final uplift of the Andes, on the migration history and population structure of this species cannot be disregarded.  相似文献   

5.
Aim We used inferences of phylogeographical structure and estimates of divergence times for three species of gophersnakes (Colubridae: Pituophis) distributed across the Mexican Transition Zone (MTZ) to evaluate the postulated association of three Neogene geological events (marine seaway inundation of the Isthmus of Tehuantepec, formation of the Transvolcanic Belt across central Mexico, and secondary uplifting of the Sierra Madre Occidental) and of Pleistocene climate change with inter‐ and intraspecific diversification. Location Mexico, Guatemala, and the western United States. Methods We combined range‐wide sampling (67 individuals representing three putative species distributed across northern Middle America and western North America) and phylogenetic analyses of 1637 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times. The hypothesized concordance of inferred gene trees with geological histories was assessed using topology tests. Results We identified three major lineages of Middle American gophersnakes, and strong phylogeographical structure within each lineage. Gene trees were statistically congruent with hypothesized geological histories for two of the three postulated geological events. Estimated divergence dates and the geographical distribution of genetic variation further support mixed responses to these geological events. Considerable phylogeographical structure appears to have been generated during the Pleistocene. Main conclusions Phylogenetic and phylogeographical structure in gophersnakes distributed across northern Middle America and western North America highlights the influence of both Neogene vicariance events and Pleistocene climate change in shaping genetic diversity in this region. Despite the presence of two major geographical barriers in southern Mexico, extreme geological and environmental heterogeneity in this area may have differentially structured genetic diversity in highland taxa. To the north, co‐distributed taxa may display a more predictable pattern of diversification across the warm desert regions. Future studies should incorporate nuclear data to disentangle inferred lineage boundaries and further elucidate patterns of mitochondrial introgression.  相似文献   

6.
The Neotropical crocodylian species, Caiman crocodilus, is widely distributed through Mesoamerica, northern South America, and the Amazon basin. Four subspecies are recognized within C. crocodilus, suggesting some geographic variation in morphology. In this study, we utilized mitochondrial DNA (mtDNA) sequence data from 45 individuals of C. crocodilus throughout its range to infer its evolutionary history and population structure, as well as to evaluate genealogical support for subspecies and their geographic distributions. Our molecular phylogenetic results identified five mtDNA haplotype clades with a mean sequence divergence of 3.4%, indicating considerable evolutionary independence among phylogeographic lineages. Our results were also broadly consistent with current subspecific taxonomy, with some important additional findings. First, we found substantial genetic structuring within C. c. fuscus from southern Mesoamerica. Second, though we confirmed the existence of a widespread Amazonian clade, we also discovered a cryptic and divergent mtDNA lineage that was indistinguishable from C. c. crocodilus based on external morphology. Third, we confirm the status of C. c. chiapasius as a distinct evolutionary lineage, and provide evidence that C. c. fuscus may be moving northward and hybridizing with C. c. chiapasius in northern Mesoamerica. Finally, our results parallel previous phylogeographic studies of other organisms that have demonstrated significant genetic structure over shorter geographic distances in Mesoamerica compared with Amazonia. We support conservation efforts for all five independent lineages within C. crocodilus, and highlight the subspecies C. c. chiapasius as a unit of particular conservation concern.  相似文献   

7.
Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation.  相似文献   

8.
9.
Devitt TJ 《Molecular ecology》2006,15(14):4387-4407
The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.  相似文献   

10.
Approximately 10 million people are infected with Trypanosoma cruzi, the causative agent of Chagas disease, which remains the most serious parasitic disease in the Americas. Most people are infected via triatomine vectors. Transmission has been largely halted in South America in areas with predominantly domestic vectors. However, one of the main Chagas vectors in Mesoamerica, Triatoma dimidiata, poses special challenges to control due to its diversity across its large geographic range (from Mexico into northern South America), and peridomestic and sylvatic populations that repopulate houses following pesticide treatment. Recent evidence suggests T. dimidiata may be a complex of species, perhaps including cryptic species; taxonomic ambiguity which confounds control. The nuclear sequence of the internal transcribed spacer 2 (ITS2) of the ribosomal DNA and the mitochondrial cytochrome b (mt cyt b) gene were used to analyze the taxonomy of T. dimidiata from southern Mexico throughout Central America. ITS2 sequence divides T. dimidiata into four taxa. The first three are found mostly localized to specific geographic regions with some overlap: (1) southern Mexico and Guatemala (Group 2); (2) Guatemala, Honduras, El Salvador, Nicaragua, and Costa Rica (Group 1A); (3) and Panama (Group 1B). We extend ITS2 Group 1A south into Costa Rica, Group 2 into southern Guatemala and show the first information on isolates in Belize, identifying Groups 2 and 3 in that country. The fourth group (Group 3), a potential cryptic species, is dispersed across parts of Mexico, Guatemala, and Belize. We show it exists in sympatry with other groups in Peten, Guatemala, and Yucatan, Mexico. Mitochondrial cyt b data supports this putative cryptic species in sympatry with others. However, unlike the clear distinction of the remaining groups by ITS2, the remaining groups are not separated by mt cyt b. This work contributes to an understanding of the taxonomy and population subdivision of T. dimidiata, essential for designing effective control strategies.  相似文献   

11.
Physalaemus pustulosus, a small leptodactylid frog with South American affinities, ranges across northern South America through Middle America to southern Mexico. To investigate its geographic variation and evolutionary origins, we analysed the presumptive gene products of 14 allozyme loci and sequenced a portion of the mitochondrial COI gene from individuals sampled throughout the distribution. Generally, allozyme dissimilarities and sequence divergences are correlated with each other and with geographic proximity. The greatest discontinuity in genetic variation was found between populations in Middle America vs. South America + Panama. Based on two Bayesian MCMC (Markov chain Monte Carlo) divergence time estimates involving two independent temporal constraints, the timing of the separation of northern and southern túngara frog lineages is significantly older than the time since completion of the current Panama land bridge. P. pustulosus first invaded Middle America from South America about 6-10 million years ago giving rise to the northern lineage. The southern lineage then invaded Panama independently after land bridge completion. Despite millions of years of independent evolution, the multilocus allozyme data revealed that western Panama populations represent a contact zone containing individuals with alleles from both groups present.  相似文献   

12.
Genetic variation in the common bush-tanager Chlorospingus ophthalmicus complex in Mesoamerica was studied. An 800-bp mitochondrial DNA fragment, including a portion of COII, full tRNA-Lys, ATP8, and partial ATP6, was sequenced and analyzed for 96 individuals of the species and related taxa, resulting in a detailed framework of genetic differentiation in the northern half of the distribution of the complex. Phylogenetic analyses based on maximum parsimony, maximum likelihood, and Bayesian optimality criteria found deep divergence between South American and Mesoamerican isolates, and seven differentiated populations corresponding to clear geographic breaks across the highlands of Mesoamerica. These distinct populations coincide with geographic structure found in previous analyses of morphological and molecular data for Chlorospingus ophthalmicus , as well as in previous phylogeographic studies of other taxa in the region. Species status for these populations is discussed under the evolutionary and biological species concepts.  相似文献   

13.
Cloud forests are distributed in the Neotropics, from northern Mexico to Argentina, under very specific ecological conditions, namely slopes with high humidity input from clouds and mist. Its distribution in Mesoamerica is highly fragmented, similar to an archipelago, and taxa are thus frequently represented as sets of isolated populations, each restricted to particular mountain ranges and often showing a high degree of divergence, both morphologically and genetically. The common bush-tanager (Chlorospingus ophthalmicus, Aves: Thraupidae) inhabits cloud forests from eastern and southern Mexico south to northwestern Argentina. Here we use 676bp of mtDNA (around the ATPase 8 gene) to explore the genetic variation and phylogeographic structure of the Mexican populations of C. ophthalmicus. Phylogenetic analyses of mtDNA sequences indicate deep genetic structure. Five major clades, which segregate according to geographic breaks, are identified (starting from the deepest one in the phylogeny): (1) Southern Chiapas and Northern Central America, (2) Tuxtlas massif, (3) Sierra Madre del Sur, (4) Eastern Oaxaca and Northern Chiapas, and (5) Sierra Madre Oriental. The long history of isolation undergone by each clade, as suggested by the phylogeny, implies that the species status of each of them should be revised.  相似文献   

14.
The native bee Nannotrigona perilampoides Cresson (Apidae: Meliponini) has been evaluated with promising results in greenhouse pollination of Solanaceae in Mexico. However, no comparison has been done with imported bumble bees (Apidae: Bombini), which are the most common bees used for greenhouse pollination. We compared the foraging activity and fruit production of habanero pepper. Capsicum chinense Jacquin, by using N. perilampoides and Bombus impatiens Cresson in pollination cages. Both bee species collected pollen on a similar number of flowers per unit time, but N. perilampoides visited significantly more flowers per trip, lasted longer on each flower, and spent more time per foraging trip. Ambient temperature and light intensity significantly affected the foraging activity of N. perilampoides. Light intensity was the only environmental variable that affected B. impatiens. Except for the fruit set, there were not significant differences in the quality of fruit produced by both bee species; however, N. perilampoides and B. impatiens performed better than mechanical vibration for all the variables measured. The abortion of fruit caused the low fruit set produced by B. impatiens, and we speculate it might be due to an excessive visitation rate. Pollination efficiency per visit (Spear's pollination efficiency index) was similar for both bee species in spite of the significantly lower amount of pollen removed by N. perilampoides. We suggested that the highest number of flowers visited per foraging trip coupled with adequate amounts of pollen transported, and transferred between flowers, could explain the performance of N. perilampoides as a good pollinator of habanero pepper. Our experiments confirm that N. perilampoides could be used as an alternative pollinator to Bombus in hot pepper under tropical climates.  相似文献   

15.
Aim To examine the phylogeographic pattern of a volant mammal at the continental scale. The pallid bat (Antrozous pallidus) was chosen because it ranges across a zone of well‐studied biotic assemblages, namely the warm deserts of North America. Location The western half of North America, with sites in Mexico, the United States, and Canada. Methods PCR amplification and sequencing of the mitochondrial control region was performed on 194 pallid bats from 36 localities. Additional sequences at the cytochrome‐b locus were generated for representatives of each control‐region haplotype. modeltest was used to determine the best set of parameters to describe each data set, which were incorporated into analyses using paup *. Statistical parsimony and measurements of population differentiation (amova , FST) were also used to examine patterns of genetic diversity in pallid bats. Results We detected three major lineages in the mitochondrial DNA of pallid bats collected across the species range. These three major clades have completely non‐overlapping geographic ranges. Only 6 of 80 control‐region haplotypes were found at more than a single locality, and sequences at the more conserved cytochrome‐b locus revealed 37 haplotypes. Statistical parsimony generated three unlinked networks that correspond exactly to clades defined by the distance‐based analysis. On average there was c. 2% divergence for the combined mitochondrial sequences within each of the three major clades and c. 7% divergence between each pair of clades. Molecular clocks date divergence between the major clades at more than one million years, on average, using the faster rates, and at more than three million years using more conservative rates of evolution. Main conclusions Divergent haplotypic lineages with allopatric distributions suggest that the pallid bat has responded to evolutionary pressures in a manner consistent with other taxa of the American southwest. These results extend the conclusions of earlier studies that found the genetic structuring of populations of some bat species to show that a widespread volant species may comprise a set of geographically replacing monophyletic lineages. Haplotypes were usually restricted to single localities, and the clade showing geographic affinities to the Sonoran Desert contained greater diversity than did clades to the east and west. While faster molecular clocks would allow for glacial cycles of the Pleistocene as plausible agents of diversification of pallid bats, evidence from co‐distributed taxa suggests support for older events being responsible for the initial divergence among clades.  相似文献   

16.
Bumble bees ( Bombus Latreille) occupy a wide diversity of habitats, from alpine meadows to lowland tropical forest, yet they appear to be similar in morphology throughout their range, suggesting that behavioural adaptations play a more important role in colonizing diverse habitats. Notwithstanding their structural homogeneity, bumble bees exhibit striking inter- and intraspecific variation in colour pattern, purportedly the outcome of mimetic evolution. A robust phylogeny of Bombus would provide the framework for elucidating the history of their wide biogeographical distribution and the evolution of behavioural and morphological adaptations, including colour pattern. However, morphological studies of bumble bees have discovered too few phylogenetically informative characters to reconstruct a robust phylogeny. Using DNA sequence data, we report the first nearly complete species phylogeny of bumble bees, including most of the 250 known species from the 38 currently recognized subgenera. Bayesian analysis of nuclear (opsin, EF-1α, arginine kinase, PEPCK) and mitochondrial (16S) sequences results in a highly resolved and strongly supported phylogeny from base to tips, with clear-cut support for monophyly of most of the conventional morphology-based subgenera. Most subgenera fall into two distinct clades ( short-faced and long-faced ) associated broadly with differences in head morphology. Within the short-faced clade is a diverse New World clade, which includes nearly one-quarter of the currently recognized subgenera, many of which are restricted to higher elevations of Central and South America. The comprehensive phylogeny provides a firm foundation for reclassification and for evaluating character evolution in the bumble bees.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 161–188.  相似文献   

17.
Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.  相似文献   

18.
A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage‐specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range‐wide statistical phylogeographic analysis on restriction site‐associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.  相似文献   

19.
Ecological niche evolution can promote or hinder the differentiation of taxa and determine their distribution. Niche‐mediated evolution may differ among climatic regimes, and thus, species that occur across a wide latitudinal range offer a chance to test these heterogeneous evolutionary processes. In this study, we examine (a) how many lineages have evolved across the continent‐wide range of the Eurasian nuthatch (Sitta europaea), (b) whether the lineages’ niches are significantly divergent or conserved and (c) how their niche evolution explains their geographic distribution. Phylogenetic reconstruction and ecological niche models (ENMs) showed that the Eurasian nuthatch contained six parapatric lineages that diverged within 2 Myr and did not share identical climatic niches. However, the niche discrepancy between these distinct lineages was relatively conserved compared with the environmental differences between their ranges and thus was unlikely to drive lineage divergence. The ENMs of southern lineages tended to cross‐predict with their neighbouring lineages whereas those of northern lineages generally matched with their abutting ranges. The coalescence‐based analyses revealed more stable populations for the southern lineages than the northern ones during the last glaciation cycle. In contrast to the overlapping ENMs, the smaller parapatric distribution suggests that the southern lineages might have experienced competitive exclusion to prevent them from becoming sympatric. On the other hand, the northern lineages have expanded their ranges and their current abutting distribution might have resulted from lineages adapting to different climatic conditions in allopatry. This study suggests that niche evolution may affect lineage distribution in different ways across latitude.  相似文献   

20.
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号