首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strains (JA349T, JA553T, JA439) of phototrophic sulphur bacteria were isolated from marine habitats of India. 16S rRNA gene sequence of the three strains clustered phylogenetically with members of the genus Marichromatium of the family Chromatiaceae belonging to the class Gammaproteobacteria. All the strains shared highest sequence similarity with the type strains of Marichromatium spp. (96-99% sequence similarity) and the new strains were characterized based on polyphasic taxonomy. Strains JA349T and JA553T can be distinguished from closest relative species of the genus Marichromatium with respect to distinct differences in cellular polar lipids, fatty acids and carbon/nitrogen sources utilization. Both strains were distinctly related (<50% based on DNA-DNA hybridization) with the type strains of the genus Marichromatium. Multilocus Sequence Analysis (MLSA) of the concatenated five protein coding genes (fusA, pufM, dnaK, recA, soxB) along with internal transcribed spacer (ITS; 16S-23S rRNA) had sequence similarity of less than 92% with the type strains of Marichromatium spp. Distinct phenotypic, chemotaxonomic and molecular differences allow the separation of strains JA349T and JA553T into new species of the genus Marichromatium for which, we propose the names Marichromatium litoris sp. nov. and Marichromatium chrysaorae sp. nov., respectively.  相似文献   

2.
Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.  相似文献   

3.
Multilocus sequence analysis based on hypervariable housekeeping proteins was utilized to differentiate closely related species in the family Enterobacteriaceae. Of 150 housekeeping proteins, the top 10 hypervariable proteins were selected and concatenated to obtain distance data. Distances between concatenated proteins within the family were 0.9–41.2%, whereas the 16S rRNA and atpD‐gyrB‐infB‐rpoB concatenated sequence (4MLSA) distances were 0.8–6.0% and 0.9–22.1%, respectively. These data indicate that phylogenetic analysis by concatenation of hypervariable proteins is a powerful tool for discriminating species in the family Enterobacteriaceae. To confirm the discriminatory power of the 10 chosen concatenated hypervariable proteins (C10HKP), phylogenetic trees based on C10HKP, 4MLSA, and the 16S rRNA gene were constructed. Comparison of average bootstrap values among C10HKP, 4MLSA and 16S rRNA genes indicated that the C10HKP tree was the most reliable. Location via the C10HKP tree was consistent with existing assignments for almost all species in the family Enterobacteriaceae. However, the C10HKP tree suggested that several species (including Enterobacter massiliensis, Escherichia vulneris, Escherichia hermannii, and Salmonella subterranea) should be reassigned to different clusters than those defined in previous analyses. Furthermore, E. hermannii and S. subterranea appeared to fall onto a branch independent from those occupied by the other Enterobacteriaceae. Therefore, we propose Atlantibacter gen. nov., such that E. hermannii and S. subterranea would be transferred to genus Atlantibacter as Atlantibacter hermannii, comb. nov. and Atlantibacter subterranea. comb. nov., respectively.  相似文献   

4.
A phylogenetic analysis based on 16S rRNA gene sequences reveals that Alysiella filiformis belongs to the family Neisseriaceae. The genus Simonsiella is phylogenetically separated by the genera Kingella and Neisseria. The species Simonsiella crassa and A. filiformis show a close phylogenetic relationship, with the 16S rDNA sequence similarity and the DNA-DNA hybridization representing 98.7% and 35%, respectively. Therefore, S. crassa should be transferred from the genus Simonsiella to the genus Alysiella as Alysiella crassa comb. nov. Simonsiella steedae and Simonsiella sp. of cat origin show strong genetic affinities and are distantly related with the type species of Simonsiella, S. mulleri. Thus, a new genus, Conchiformibium is proposed; Conchiformibium steedae comb. nov. and Conchiformibium kuhniae sp. nov. are accommodated in this new genus. On the basis of the phylogenetic, phenotypic and chemotaxonomic distinction from the genus Neisseria, N. denitrificans should be reclassified, for which a new genus and new combination Bergeriella denitrificans are proposed.  相似文献   

5.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

6.
A free-living Gram-negative bacterial strain CR11(T) was isolated from corn roots. Polyphasic taxonomy was performed, including API20 NE and API50 CH bacterial identification kits, Biolog analysis, lipids and fatty acid analysis, DNA-DNA hybridization, 16S rRNA and cpn60 gene sequence analyses. 16S rRNA gene sequence analysis indicated that strain CR11(T) belonged to the genus Sphingobacterium and was closely related to Sphingobacterium multivorum IFO 14947(T) (98% similarity) and Sphingobacterium. thalpophilum ATCC 43320(T) (97% similarity). DNA-DNA hybridization showed 11% and 13% DNA re-association with S. multivorum LMG 8342(T) and S. thalpophilum LMG 11520(T), respectively. Major fatty acids (16:0, 15:0 iso and 17:0 iso 3-OH) and the G+C content of the DNA (40.5 mol%), were also similar to those of the genus Sphingobacterium. The predominant respiratory quinone was MK-7. In all analyses, including phenotypic characterization, this isolate was found to be different from the closely related species, S. multivorum and S. thalpophilum. On the basis of these results, this strain represents a new species within the genus Sphingobacterium. The name Sphingobacterium canadense sp. nov. is suggested and the type strain is CR11(T) (=NCCB 100125(T)=LMG 23727(T)).  相似文献   

7.
Two isolates, with an optimum growth temperature of about 35-37 °C and an optimum pH for growth between 6.5 and 7.5, were recovered from a deep mineral water aquifer in Portugal. Strains form rod-shaped cells and were non-motile. These strains were non-pigmented, strictly aerobic, catalase and oxidase positive. Strains F2-233T and F2-223 assimilated carbohydrates, organic acids and amino acids. Major fatty acids were novel iso internally branched such as 17:0 iso 10-methyl, 17:0 iso and 15:0 iso 8-methyl. The peptidoglycan contained meso-diaminopimelic acid and menaquinone MK-7 was the major respiratory quinone. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Thermoleophilum, Patulibacter, Conexibacter and Solirubrobacter to which they have pairwise sequence similarity in the range 87-88%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain F2-233T (=CECT 7815T = LMG 26412T) for which we propose the name Gaiella occulta gen. nov., sp. nov. We also propose that this organism represents a novel family named Gaiellaceae fam. nov. of a novel order named Gaiellales ord. nov.  相似文献   

8.
A novel actinobacterial strain, designated P4-7(T), was isolated from soil of a ginseng field located in Geumsan County, Korea. Cells of the strain were aerobic, Gram-stain-positive, non-motile, short rods. The isolate contained MK-8(H(4)) as the predominant menaquinone, iso-C(16:0), anteiso-C(15:0) and anteiso-C(17:0) as the major fatty acids, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the major polar lipids, glucose, mannose, xylose, ribose and rhamnose as whole-cell sugars, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain P4-7(T) belongs to the family Nakamurellaceae and is most closely related to Nakamurella multipartita, Humicoccus flavidus and Saxeibacter lacteus (96.3, 97.0 and 96.4% similarity to the respective type strains). Based on comparative analyses of the 16S rRNA and rpoB gene sequences and chemotaxonomic data, it is proposed that H. flavidus and S. lacteus be transferred to the genus Nakamurella. Combined genotypic and phenotypic data also suggested that strain P4-7(T) be placed in a novel species of the genus Nakamurella, for which the name Nakamurella panacisegetis sp. nov. is proposed; the type strain is P4-7(T) (=KCTC 19426(T)=CECT 7604(T)).  相似文献   

9.
Gram-negative, rod-shaped bacteria were isolated from Robinia pseudoacacia root nodules. On the basis of the 16S rRNA gene phylogeny, they are closely related to Bradyrhizobium, Rhodopseudomonas and Nitrobacter species (97% sequence similarity), belonging to the class Alphaproteobacteria and family Bradyrhizobiaceae. The results of physiological and biochemical tests together with sequence analysis of housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) allowed differentiation of this group from other validly published Bradyrhizobiaceae genera. NodA, nodC and nifH genes could not be amplified. On the basis of genotypic and phenotypic data, these organisms represent a novel genus and species for which the name Tardiphaga robiniae gen. nov., sp. nov. (LMG 26467(T)=CCUG 61473(T)), is proposed.  相似文献   

10.
A spore-forming bacterium strain 4J5(T) was isolated from rice field mud. When co-cultured with Methanobacterium formicicum DSM 1535(T), strain 4J5(T) could syntrophically degrade saturated fatty acids with 4-8 carbon atoms, including 2-methylbutyrate. Phylogenetic analysis based on 16S rRNA gene similarity showed that strain 4J5(T) was most closely related to Syntrophomonas wolfei subsp. wolfei DSM 2245(T) (98.9% sequence similarity); however, it differed from the latter in the substrates utilized and its genetic characteristics. Therefore, a new subspecies Syntrophomonas wolfei subsp. methylbutyratica is proposed. The type strain is 4J5(T) (=CGMCC 1.5051(T)=JCM 14075(T)). Furthermore, based on 16S rRNA sequence divergence and substrate utilization, we propose the assignment of Syntrophomonas wolfei subsp. saponavida DSM 4212(T) to Syntrophomonas saponavida sp. nov. comb. nov.  相似文献   

11.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

12.
A bright yellow pigmented bacterium was isolated from the leaf surface of Trifolium repens in Germany. Comparative analysis of 16S rRNA gene sequences showed that this bacterium is most closely related to Duganella zoogloeoides IAM 12670(T), with a similarity of 99.3%, but revealed only a moderate similarity (96.8%) to the second Duganella species, Duganella violaceinigra YIM 31327(T). Strain T54(T) is clearly different from D. zoogloeoides IAM 12670(T) in that DNA-DNA hybridization revealed a similarity value of 46% (reciprocal 42%). Ubiquinone (Q-8) was the respiratory quinone and the predominant polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids and one aminolipid. Strain T54(T) can be distinguished from D. zoogloeoides by the carbon substrate utilization tests of d-trehalose, cis-aconitate, trans-aconitate, glutarate and dl-3-hydroxybutyrate, and 4-hydroxybenzoate in addition to a different polar lipid profile. The name Duganella phyllosphaerae sp. nov. is proposed for this novel species, with the type strain T54(T) (=LMG 25994 = CCM 7824(T)) [corrected]. In addition, it is proposed to reclassify D. violaceinigra into a novel genus Pseudoduganella gen. nov. as the novel species Pseudoduganella violaceinigra comb. nov. because of the low 16S rRNA gene sequence similarities to the other Duganella species (<97%) and striking differences in chemotaxonomic (lipid profiles and fatty acid patterns) and other phenotypic features, including the colony pigmentation.  相似文献   

13.
Two bradyrhizobial strains, CTAW71(T) and CTAW69, previously isolated from root nodules of Cytisus villosus, have been analysed using a polyphasic approach. These strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium cytisi, whose type strain CTAW11(T) presented 99.8% identity with respect to strain CTAW71(T). Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII harboured by strain CTAW71(T) were divergent to those from B. cytisi CTAW11(T), with identity values of 93%, 95% and 97%, respectively. These differences were congruent with DNA-DNA hybridization analysis that revealed an average of 37% relatedness between strain CTAW71(T) and B. cytisi CTAW11(T). Phenotypic characteristics were identical for strains CTAW71(T) and CTAW69, but differed from those of the described species from genus Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose that strains CTAW71(T) and CTAW69 should be classified into a new species for which the name Bradyrhizobium rifense sp. nov. is proposed (type strain CTAW71(T)=LMG 26781(T)=CECT 8066(T)).  相似文献   

14.
Vibrio harveyi and related bacteria are important pathogens responsible for severe economic losses in the aquaculture industry worldwide. Phenotypic tests and 16S rRNA gene analysis fail to discriminate species within the V. harveyi group because these are phenotypically and genetically nearly identical. This study used multilocus sequence analysis to identify 36 V. harveyi-like isolates obtained from a wide range of sources in Australia and to re-evaluate the identity of important pathogens. Phylogenies inferred from the 16S rRNA gene and five concatenated protein-coding genes (rpoA-pyrH-topA-ftsZ-mreB) revealed four well-supported clusters identified as V. harveyi, V. campbellii, V. rotiferianus and V. owensii. Results revealed that important V. campbellii and V. owensii prawn pathogens were previously misidentified as V. harveyi and also that the recently described V. communis sp. nov. is likely a junior synonym of V. owensii. Although the MLSA topologies corroborated the 16S rRNA gene phylogeny, the latter was less informative than each of the protein-coding genes taken singularly or the concatenated dataset. A two-locus phylogeny based on topA-mreB concatenated sequences was consistent with the five-locus MLSA phylogeny. Global Bayesian phylogenies inferred from topA-mreB suggested that this gene combination provides a practical yet still accurate approach for routine identification of V. harveyi-related species.  相似文献   

15.
Phenotypic and phylogenetic studies were performed on a Gram-negative obligately anaerobic rod-shaped bacterium isolated from two sea mammals. 16S rRNA gene sequence analysis demonstrated the bacterium represents a hitherto unknown line of descent peripherally associated to the fusobacteria and low G + C relatives. Based on the result of the phylogenetic analysis and phenotypic criteria, it is proposed that the bacterium should be assigned to a new genus, Cetobacterium ceti gen. nov., sp. nov. The type strain of Cetobacterium ceti sp. nov. is NCFB 3026.  相似文献   

16.
Three Gram-stain negative, aerobic, non-motile, non-spore-forming, rod-shaped bacterial strains, PYM5-11T, RaM5-2 and PYM5-8, were isolated from the drinking water supply system of Budapest (Hungary) and their taxonomic positions were investigated by a polyphasic approach. All three strains grew optimally at 20-28 °C and pH 5-7 without NaCl. The G+C content of the DNA of the type strain was 65.4 mol%. On the basis of 16S rRNA gene sequence analysis, the isolates showed 94.5-94.9% sequence similarity to the type strain of Dokdonella koreensis and a similarity of 93.0-94.1% to the species of the genera Aquimonas and Arenimonas. The major isoprenoid quinone of the strains was ubiquinone Q-8. The predominant fatty acids were iso-C15:0, iso-C17:1ω9c, C16:1ω7c, and C16:0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine, as well as several unidentified aminolipids and phospholipids were present. The 16S rRNA gene sequence analysis, the predominant fatty acids, the polar lipid composition, RiboPrint patterns, physiological and biochemical characteristics showed that the three strains were related but distinct from the type strains of the four recognized species of the genus Dokdonella, and indicated that the strains represented a new genus within the Gammaproteobacteria. The strain PYM5-11 (=DSM 21667T=NCAIM B 02337T) is proposed as the type strain of a new genus and species, designated as Tahibacter aquaticus gen. nov., sp. nov.  相似文献   

17.
Based on the results of a phylogenetic analysis of 16S rRNA and the presence of sphingoglycolipid in cellular lipids of the type strains, transfer of "Rhizomonas" suberifaciens, Blastomonas natatoria and Erythromonas ursincola to the genus Sphingomonas as Sphingomonas suberifaciens (van Bruggen et al 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., and Sphingomonas ursincola (Yurkov et al 1997) comb. nov. are herein proposed together with the emendation of genus Sphingomonas. The type strain of S. suberifaciens is van Bruggen Cal=ATCC 49382=NCPPB 3629=IFO 15211=JCM 8521, that of S. natatoria is ATCC 35951 =DSM 3183=NCIMB 12085=JCM10396, and that of S. ursincola is DSM 9006= KR-99.  相似文献   

18.
A Gram-negative, strictly aerobic, coccoid to short rod-shaped marine bacterium strain MKT107(T) was isolated from the molluscan top shell Omphalius pfeifferi pfeifferi collected on the coast of Japan. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MKT107(T) constitutes a new lineage in alpha-Proteobacteria related to the genera Nereida, Roseobacter, Staleya, Oceanibulbus and Sulfitobacter. Strain MKT107(T) was found to require salt for its growth and to be mesophilic. It contained 18:1omega7c and 16:0 as major cellular fatty acids and 3-OH 10:0 and 3-OH 12:0 as hydroxy fatty acids. The DNA base composition of the isolate was 61.6 mol% G+C. The major quinone was Q-10. Sufficient differences existed to distinguish this strain from currently recognized bacterial genera. Therefore, the isolate is classified as representing a new genus and species, Tateyamaria omphalii gen. nov., sp. nov. (type strain MKT107(T) =IAM 15108(T) =KCTC 12333(T); GenBank accession no. AB193438).  相似文献   

19.
Genotypic and phenotypic analyses were performed on five Gram-negative, catalase and oxidase-positive, rod-shaped bacteria isolated from the gill and liver of four rainbow trout. Studies based on comparative 16S rRNA gene sequence analysis showed that the five new isolates shared 99.8-100% sequence similarity and that they belong to the genus Chryseobacterium. The nearest phylogenetic neighbours of the strain 701B-08(T) were Chryseobacterium ureilyticum F-Fue-04IIIaaaa(T) (99.1% 16S rRNA gene sequence similarity) and Chryseobacterium joosteii LMG 18212(T) (98.6%). DNA-DNA hybridization values between the five isolates were 91-99% and ranged from 2 to 53% between strain 701B-08(T) and the type strains of phylogenetically closely related species of Chryseobacterium. Strain 701B-08(T) had a DNA G+C content of 36.3 mol%, the major fatty acids were iso-C(15:0), iso-C(17:1)ω9c, C(16:1)ω6c and iso-C(17:0) 3-OH and the predominant respiratory quinone was MK-6. The novel isolates were distinguished from related Chryseobacterium species by physiological and biochemical tests. The genotypic and phenotypic properties of the isolates from rainbow trout suggest their classification as representatives of a novel species of the genus Chryseobacterium, for which the name Chryseobacterium oncorhynchi sp. nov. is proposed. The type strain is 701B-08(T) (=CECT 7794(T)=CCUG 60105(T)).  相似文献   

20.
Three red-pink pigmented strains, designated A1-12(T), A2-50A(T) and A2-91(T), were recovered from two different sites in a uranium mine. For all strains, the optimum growth temperature was 25°C, the optimum pH was 6.0-6.5 and the DNA G+C contents were between 60 and 63.4 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the fatty acid profiles contained iso- and anteiso-branched C15 fatty acids, summed feature 3 (16:1 ω6c and/or ω7c and/or 15:0 iso 2-OH), summed feature 4 (17:1 anteiso B and/or iso I) and the unsaturated fatty acid 16:1 ω5c as the major components. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented three distinct branches within the family Flexibacteraceae most closely related to the members of the genus Hymenobacter. Strain A1-12(T) formed a distinct phylogenetic line along with H. rigui KCTC 12533(T) and they shared approximately 98.9% 16S rRNA gene sequence similarity. However, these two strains shared only 14.7% pairwise similarity in their genomic DNA. Strains A2-50A(T) and A2-91(T) formed two distinct lineages, related to the species H. soli KCTC 12607(T), sharing about 95.5% 16S rRNA gene sequence similarity between themselves, and 88.3 and 92.0% with other members of the genus Hymenobacter. Based on the phylogenetic analysis and physiological and biochemical characteristics, these isolates were considered to represent three novel species for which we propose the names Hymenobacter perfusus for strain A1-12(T) (=CIP 110166=LMG 26000), Hymenobacter flocculans for strain A2-50A(T) (=CIP 110139=LMG 25699) and Hymenobacter metalli for strain A2-91(T) (=CIP 110140=LMG 25700).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号