首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G(z) is a member of the G(i) family of trimeric G proteins whose primary role in cell physiology is still unknown. In an ongoing effort to elucidate the cellular functions of G(z), the yeast two-hybrid system was employed to identify proteins that specifically interact with a mutationally activated form of Galpha(z). One of the molecules uncovered in this screen was Rap1GAP, a previously identified protein that specifically stimulates GTP hydrolytic activity of the monomeric G protein Rap1 and thus is believed to function as a down-regulator of Rap1 signaling. Like G(z), the precise role of Rap1 in cell physiology is poorly understood. Biochemical analysis using purified recombinant proteins revealed that the physical interaction between Galpha(z) and Rap1GAP blocks the ability of RGSs (regulators of G protein signaling) to stimulate GTP hydrolysis of the alpha subunit, and also attenuates the ability of activated Galpha(z) to inhibit adenylyl cyclase. Structure-function analyses indicate that the first 74 amino-terminal residues of Rap1GAP, a region distinct from the catalytic core domain responsible for the GAP activity toward Rap1, is required for this interaction. Co-precipitation assays revealed that Galpha(z), Rap1GAP, and Rap1 can form a stable complex. These data suggest that Rap1GAP acts as a signal integrator to somehow coordinate and/or integrate G(z) signaling and Rap1 signaling in cells.  相似文献   

2.
We used the yeast two-hybrid system to identify proteins that interact directly with Galpha(o). Mutant-activated Galpha(o) was used as the bait to screen a cDNA library from chick dorsal root ganglion neurons. We found that Galpha(o) interacted with several proteins including Gz-GTPase-activating protein (Gz-GAP), a new RGS protein (RGS-17), a novel protein of unknown function (IP6), and Rap1GAP. This study focuses on Rap1GAP, which selectively interacts with Galpha(o) and Galpha(i) but not with Galpha(s) or Galpha(q). Rap1GAP interacts more avidly with the unactivated Galpha(o) as compared with the mutant (Q205L)-activated Galpha(o). When expressed in HEK-293 cells, unactivated Galpha(o) co-immunoprecipitates with the Rap1GAP. Expression of chick Rap1GAP in PC-12 cells inhibited activation of Rap1 by forskolin. When unactivated Galpha(o) was expressed, the amount of activated Rap1 was greatly increased. This effect was not observed with the Q205L-Galpha(o). Expression of unactivated Galpha(o) stimulated MAP-kinase (MAPK1/2) activity in a Rap1GAP-dependent manner. These results identify a novel function of Galpha(o), which in its resting state can sequester Rap1GAP thereby regulating Rap1 activity and consequently gating signal flow from Rap1 to MAPK1/2. Thus, activation of G(o) could modulate the Rap1 effects on a variety of cellular functions.  相似文献   

3.
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.  相似文献   

4.
5.
6.
7.
Rap1 GTPase is activated by a variety of stimulations in many types of cells, but its exact functions remain unknown. In this study we have shown that SPA-1 interferes with Rap1 activation by membrane-targeted C3G, C3G-F, in 293T cells through the GTPase activating protein (GAP) activity. SPA-1 transiently expressed in HeLa cells was mostly localized at the cortical cytoskeleton and induced rounding up of the cells, whereas C3G-F conversely induced extensive cell spreading. Conditional SPA-1 overexpression in HeLa cells by tetracycline-regulative system suppressed Rap1 activation upon plating on dishes coated with fibronectin and resulted in the reduced adhesion. When SPA-1 was conditionally induced after the established cell adhesion, the cells gradually rounded up and detached from the dish. Both effects were counteracted by exogenous fibronectin in a dose-dependent manner. Retroviral overexpression of SPA-1 in promyelocytic 32D cells also inhibited both activation of Rap1 and induction of cell adhesion by granulocyte colony stimulating factor without affecting differentiation. These results have indicated that Rap1 GTP is required for the cell adhesion induced by both extracellular matrix and soluble factors, which is negatively regulated by SPA-1.  相似文献   

8.
The mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) is activated following engagement of the T-cell receptor and is required for interleukin 2 (IL-2) production and T-cell proliferation. This activation is enhanced by stimulation of the coreceptor CD28 and inhibited by the coreceptor CTLA-4. We show that the small G protein Rap1 is regulated in the opposite manner; it is inhibited by CD28 and activated by CTLA-4. Together, CD3 and CTLA-4 activate Rap1 in a sustained manner. To delineate T-cell function in the absence of Rap1 activity, we generated transgenic mice expressing Rap1GAP1, a Rap1-specific GTPase-activating protein. Transgenic mice showed lymphadenopathy, and transgenic T cells displayed increased ERK activation, proliferation, and IL-2 production. More significantly, the inhibitory effect of CTLA-4 on T-cell function in Rap1GAP1-transgenic T cells was reduced. We demonstrate that CTLA-4 activates Rap1, and we propose that intracellular signals from CTLA-4 antagonize CD28, at least in part, at the level of Rap1.  相似文献   

9.
GTPase-activating proteins are required to terminate signaling by Rap1, a small guanine nucleotide-binding protein that controls integrin activity and cell adhesion. Recently, we identified Rap1GAP2, a GTPase-activating protein of Rap1 in platelets. Here we show that 14-3-3 proteins interact with phosphorylated serine 9 at the N terminus of Rap1GAP2. Platelet activation by ADP and thrombin enhances serine 9 phosphorylation and increases 14-3-3 binding to endogenous Rap1GAP2. Conversely, inhibition of platelets by endothelium-derived factors nitric oxide and prostacyclin disrupts 14-3-3 binding. These effects are mediated by cGMP- and cAMP-dependent protein kinases that phosphorylate Rap1GAP2 at serine 7, adjacent to the 14-3-3 binding site. 14-3-3 binding does not change the GTPase-activating function of Rap1GAP2 in vitro. However, 14-3-3 binding attenuates Rap1GAP2 mediated inhibition of cell adhesion. Our findings define a novel crossover point of activatory and inhibitory signaling pathways in platelets.  相似文献   

10.
11.
Epidermal growth factor (EGF) activates Ras and Rap1 at distinct intracellular regions. Here, we explored the mechanism underlying this phenomenon. We originally noticed that in cells expressing Epac, a cAMP-dependent Rap1 GEF (guanine nucleotide exchange factor), cAMP activated Rap1 at the perinuclear region, as did EGF. However, in cells expressing e-GRF, a recombinant cAMP-responsive Ras GEF, cAMP activated Ras at the peripheral plasma membrane. Based on the uniform cytoplasmic expression of Epac and e-GRF, GEF did not appear to account for the non-uniform increase in the activities of Ras and Rap1. In contrast, when we used probes with reduced sensitivity to GTPase-activating proteins (GAPs), both Ras and Rap1 appeared to be activated uniformly in the EGF-stimulated cells. Furthermore, we calculated the local rate constants of GEFs and GAPs from the video images of Ras activation and found that GAP activity was higher at the central plasma membrane than the periphery. Thus we propose that GAP primarily dictates the spatial regulation of Ras family G proteins, whereas GEF primarily determines the timing of Ras activation.  相似文献   

12.
The Goα splice variants Go1α and Go2α are subunits of the most abundant G‐proteins in brain, Go1 and Go2. Only a few interacting partners binding to Go1α have been described so far and splice variant‐specific differences are not known. Using a yeast two‐hybrid screen with constitutively active Go2α as bait, we identified Rap1GTPase activating protein (Rap1GAP) and Girdin as interacting partners of Go2α, which was confirmed by co‐immunoprecipitation. Comparison of subcellular fractions from brains of wild type and Go2α?/? mice revealed no differences in the overall expression level of Girdin or Rap1GAP. However, we found higher amounts of active Rap1‐GTP in brains of Go2α deficient mutants, indicating that Go2α may increase Rap1GAP activity, thereby effecting the Rap1 activation/deactivation cycle. Rap1 has been shown to be involved in neurite outgrowth and given a Rap1GAP‐Go2α interaction, we found that the loss of Go2α affected axonal outgrowth. Axons of cultured cortical and hippocampal neurons prepared from embryonic Go2α?/? mice grew longer and developed more branches than those from wild‐type mice. Taken together, we provide evidence that Go2α regulates axonal outgrowth and branching.  相似文献   

13.
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells.  相似文献   

14.
GoLoco motif proteins act as guanine nucleotide dissociation inhibitors (GDIs) for G-protein alpha subunits of the adenylyl cyclase-inhibitory (Galpha(i/o)) class. Rap1GAP2 is a newly identified GoLoco motif- and RapGAP domain-containing protein, and thus is considered a potential integrator of heterotrimeric and monomeric GTPase signaling. Primary sequence analysis indicated that the Rap1GAP2 GoLoco motif contains a lysine (Lys-75), rather than an arginine, at the crucial residue responsible for binding the alpha and beta phosphates of GDP and exerting GDI activity. To determine the functional outcome of this sequence variation we conducted a biophysical analysis of the human Rap1GAP2b/c GoLoco motif. We found that human Rap1GAP2b/c was deficient in GDI activity and Galpha interaction capability. Mutation of lysine-75 to arginine could not regain functional activity of the Rap1GAP2b/c GoLoco motif. Thus, the Rap1GAP2b/c GoLoco motif can be classed as inactive towards Galpha subunits. We also found that the Rap1GAP1a GoLoco motif, which lacks seven N-terminal amino acid residues present in canonical GoLoco motifs, does not interact with Galpha(i1). In contrast, the GoLoco motif of Rap1GAP1b, which is canonical in primary sequence, was found to interact with Galpha(i1).GDP.  相似文献   

15.
16.
Glial cell line-derived neurotrophic factor (GDNF) was originally recognized for its ability to promote survival of midbrain dopaminergic neurons, but it has since been demonstrated to be crucial for the survival and differentiation of many neuronal subpopulations, including motor neurons, sympathetic neurons, sensory neurons and enteric neurons. To identify possible effectors or regulators of GDNF signaling, we performed a yeast two-hybrid screen using the intracellular domain of RET, the common signaling receptor of the GDNF family, as bait. Using this approach, we identified Rap1GAP, a GTPase-activating protein (GAP) for Rap1, as a novel RET-binding protein. Endogenous Rap1GAP co-immunoprecipitated with RET in neural tissues, and RET and Rap1GAP were co-expressed in dopaminergic neurons of the mesencephalon. In addition, overexpression of Rap1GAP attenuated GDNF-induced neurite outgrowth, whereas suppressing the expression of endogenous Rap1GAP by RNAi enhanced neurite outgrowth. Furthermore, using co-immunoprecipitation analyses, we found that the interaction between RET and Rap1GAP was enhanced following GDNF treatment. Mutagenesis analysis revealed that Tyr981 in the intracellular domain of RET was crucial for the interaction with Rap1GAP. Moreover, we found that Rap1GAP negatively regulated GNDF-induced ERK activation and neurite outgrowth. Taken together, our results suggest the involvement of a novel interaction of RET with Rap1GAP in the regulation of GDNF-mediated neurite outgrowth.  相似文献   

17.
Beyond regulating Rap activity, little is known regarding the regulation and function of the Rap GTPase-activating protein Rap1GAP. Tuberin and E6TP1 protein levels are tightly regulated through ubiquitin-mediated proteolysis. A role for these RapGAPs, along with SPA-1, as tumor suppressors has been demonstrated. Whether Rap1GAP performs a similar role was investigated. We now report that Rap1GAP protein levels are dynamically regulated in thyroid-stimulating hormone (TSH)-dependent thyroid cells. Upon TSH withdrawal, Rap1GAP undergoes a net increase in phosphorylation followed by proteasome-mediated degradation. Sequence analysis identified two putative destruction boxes in the Rap1GAP C-terminal domain. Glycogen synthase kinase 3beta (GSK3beta) phosphorylated Rap1GAP immunoprecipitated from thyroid cells, and GSK3beta inhibitors prevented phosphorylation and degradation of endogenous Rap1GAP. Co-expression of GSK3beta and Rap1GAP in human embryonic kidney 293 cells stimulated proteasome-dependent Rap1GAP turnover. Mutational analysis established a role for serine 525 in the regulation of Rap1GAP stability. Overexpression of Rap1GAP in thyroid cells impaired TSH/cAMP-stimulated p70S6 kinase activity and cell proliferation. These data are the first to show that Rap1GAP protein levels are tightly regulated and are the first to support a role for Rap1GAP as a tumor suppressor.  相似文献   

18.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.  相似文献   

19.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.Key words: Rap1GAP, cell adhesion, matrix adhesion, Rap, E-cadherin, β-catenin  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号