首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Different organisms employ a variety of strategies to segregate their chromosomes during mitosis. Despite these differences, however, the basic regulatory principles that govern this intricate process are evolutionarily conserved. Above all, rapid dephosphorylation of mitotic phosphoproteins upon the metaphase-to-anaphase transition has proven to be essential for proper function of the mitotic spindle and accurate chromosome segregation in all eukaryotes. Recently, a central midzone component, the microtubule crosslinker Ase1/PRC1 (anaphase spindle elongation 1/protein regulating cytokinesis 1), was uncovered as a universal target of such control mechanism. Depending on its phosphorylation status, Ase1 either restrains spindle elongation in metaphase or promotes it after anaphase onset via recruitment of kinesin motor proteins to the midzone. Here we discuss the potential role of Ase1/PRC1 as a central regulatory platform that interconnects distinct functions of the midzone such as spindle stability, spindle elongation and cytokinesis. Additionally, we provide a comparative overview of the chromosome segregation strategies used by the main model organisms.  相似文献   

7.
As detailed information accumulates about how cell cycle events are regulated, we can expect new opportunities for application to cancer therapy. The altered expression of oncogenes and tumor suppressor genes that commonly occurs in human cancers may impair the ability of the cells to respond to metabolic perturbations or stress. Impaired cell cycle regulation would make cells vulnerable to pharmacologic intervention by drug regimens tailored to the defects existing in particular tumors. Recent findings that may become applicable to therapy are reviewed, and the possible form of new therapeutic stratagems is considered.  相似文献   

8.
Cell cycle control by Ca2+ in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
We established an experimental system suitable for study of cell cycle regulation by Ca2+ in the yeast Saccharomyces cerevisiae. Systematic cell cycle analysis using media containing various concentrations of Ca2+, a Ca2(+)-ionophore (A23187), and a Ca2(+)-chelator [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) revealed that simultaneous addition of 10 microM A23187 and 10 mM EGTA to cells growing in a Ca2(+)-deficient medium at 22 degrees C caused rapid decrease in intracellular Ca content and resulted in transient G1 arrest followed by block mostly at G2/M, as revealed by flow cytometry. Recovery from G1 arrest was not due to coordinated initiation of DNA synthesis and bud emergence: unbudded cells with S or G2/M DNA were observed. Examination of terminal phenotype suggested that Ca2+ was required at all the stages of the cell cycle except for the initiation of DNA synthesis. The intracellular cAMP level decreased within 10 min of addition of A23187 and EGTA. No significant transient G1 arrest was observed in cells incubated with 8-Br-cAMP, or RAS2val19 and delta bcy1 mutants, which produce a high level of cAMP and have constitutively activated cAMP-dependent protein kinase, respectively. These results indicate that Ca2+ is essential for cell cycle progression and suggest that Ca2+ may regulate the cAMP level. This system will be useful for genetic and molecular studies on cell cycle events regulated by Ca2+.  相似文献   

9.
Comment on: Carr SM, et al. EMBO J. 2011; 30:317-27.  相似文献   

10.
11.
12.
A Fatatis  R J Miller 《FASEB journal》1999,13(11):1291-1301
The effects of growth factors have been shown to depend on the position of a cell in the cell cycle. However, the physiological basis for this phenomenon remains unclear. Here we show that the majority of both CEINGE clone3 (cl3) and human embryonic kidney 293 cells, when arrested in a quiescent phase (G(0)), responded to platelet-derived growth factor BB (PDGF-BB) with non-oscillatory Ca(2+) signals. Furthermore, the same type of Ca(2+) response was also observed in CEINGE cl3 cells (and to a lesser extent in HEK 293 cells) blocked at the G(1)/S boundary. In contrast, CEINGE cl3 cells synchronized in early G(1) or released from G(1)/S arrest responded in an oscillatory fashion. This cell cycle-dependent modulation of Ca(2+) signaling was not observed on epidermal growth factor and G-protein-coupled receptor stimulation and was not due to differences in the expression of PDGF receptors (PDGFRs) during the cell cycle. We demonstrate that inhibition of sphingosine-kinase, which converts sphingosine to sphingosine-1-phosphate, caused G(0) as well as G(1)/S synchronized cells to restore the oscillatory Ca(2+) response to PDGF-BB. In addition, we show that the synthesis of sphingosine and sphingosine-1-phosphate is regulated by the cell cycle and may underlie the differences in Ca(2+) signaling after PDGFR stimulation.  相似文献   

13.

Background  

The secreted morphogen Dpp plays important roles in spatial regulation of gene expression and cell cycle progression in the developing Drosophila eye. Dpp signaling is required for timely cell cycle arrest ahead of the morphogenetic furrow as a prelude to differentiation, and is also important for eye disc growth. The dpp gene is expressed at multiple locations in the eye imaginal disc, including the morphogenetic furrow that sweeps across the eye disc as differentiation initiates.  相似文献   

14.
Do p27Kip1 and p21Cip1 function as activators or inhibitors of D cyclin-cdk4 activity? Attempts to answer this question, and thus to understand how cdk4--a key cell cycle regulator--becomes active, have produced conflicting data. In this perspective, we summarize the results of studies addressing the effects of p27Kip1 and p21Cip1 on the assembly and activation of D cyclin-cdk4 complexes. Emphasis is placed on our experimental findings that support a model of cell cycle control in which p27Kip1 and p21Cip1 stabilize D cyclin-cdk4 complexes but inhibit D cyclin-cdk4 activity.  相似文献   

15.
16.
17.
18.
19.
Commitment to DNA replication is one of the major control points of the eukaryotic cell cycle, and one that has been curiously hard to analyse. However, homologous components of this process are now being identified by genetic analysis of yeast and by biochemical analysis of cell-free systems from higher eukaryotes. This homology suggests that these components are part of a universal mechanism for controlling the eukaryotic cell cycle. The most important component of this mechanism is the cdc2 protein, which controls the initiation of both DNA replication and mitosis. At present, however, its precise role in DNA replication is unclear.  相似文献   

20.
Studies on the initiation of DNA replication in eukaryotes have progressed recently through different approaches that promise to converge. Proteins interacting with the origin recognition complex form a prereplicative complex early in the cell cycle. The regulation of the binding of MCM/P1 proteins to chromatin plays a key role in the replication licensing system which prevents re-replication in a single cell cycle. Cyclin-dependent kinases provide an overall control of the cell cycle by stimulating S-phase entry and possibly by preventing re-establishment of prereplicative complexes in G2 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号