首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究秀丽隐杆线虫(简称线虫)中一种扩展的Synaptotagmin同源物ESYT-2在致密核心囊泡分泌过程中起到的作用。方法:以线虫为研究对象,运用线虫腔胞吸收ANF-GFP的基本原理来确定ESYT-2与分泌相关,之后又进一步使用全内反射荧光显微镜技术(TIRFM)来研究ESYT-2对致密核心囊泡的具体调控。结果:①ESYT-2功能缺失影响线虫神经细胞致密核心囊泡分泌。②ESYT-2影响致密核心囊泡分泌的栓系过程。结论:ESYT-2调控了致密核心囊泡的分泌过程。  相似文献   

2.
利用模式生物秀丽隐杆线虫,考察8种人体必需氨基酸对衰老的影响。首先建立秀丽隐杆线虫寿命模型,以雷帕霉素为阳性对照药,分别考察8种必需氨基酸对线虫生存时间的影响。再用筛选出的氨基酸处理线虫21d,通过秀丽隐杆线虫-绿脓杆菌感染模型,考察氨基酸对线虫的抗感染能力的影响,利用实时荧光定量Real-Time RT-PCR方法检测氨基酸处理线虫后DAF-16/FOXO下游基因和免疫相关基因的表达水平。结果表明8种必需氨基酸中苏氨酸和异亮氨酸既能延长野生型线虫的寿命又能延长daf-16突变型线虫的寿命,同时还能增强秀丽隐杆线虫抗绿脓杆菌感染的能力,并提高免疫相关基因lys-7、clec-67的表达水平,而DAF-16/FOXO下游基因表达没有明显变化。因此苏氨酸和异亮氨酸能延长线虫寿命、提高抗感染能力,且对线虫寿命的延长作用不完全依赖于DAF-16/FOXO转录因子。  相似文献   

3.
4.
脂肪的过度沉积会引发多种疾病,如心脏病、高血压、高甘油三酯血症、Ⅱ型糖尿病等。小白鼠(Mus musculus)和猪(Sus domesticus)是常用的研究脂肪沉积的模式动物,近年来随着研究的深入,发现脂肪代谢调控网络错综复杂,调控因子相互作用。秀丽隐杆线虫(Caenorhabditis elegans)具有结构简单、身体透明、便于观察、繁殖周期短、易于人工培养等特征,因此使得秀丽隐杆线虫进行脂肪调控的研究成为了可能。本文通过总结国内外线虫脂肪沉积方面的研究,综述秀丽隐杆线虫研究脂肪沉积的进展。  相似文献   

5.
6.
The Caenorhabditis elegans genome contains a single dystrophin/utrophin orthologue, dys-1. Point mutations in this gene, dys-1(cx35) and dys-1(cx18), result in truncated proteins. Such mutants offer potentially valuable worm models of human Duchenne muscular dystrophy. We have used microarrays to examine genes expressed differentially between wild-type C. elegans and dys-1 mutants. We found 106 genes (115 probe sets) to be differentially expressed when the two mutants are compared to wild-type worms, 49 of which have been assigned to six functional categories. The main categories of regulated genes in C. elegans are genes encoding intracellular signalling, cell-cell communication, cell-surface, and extracellular matrix proteins; genes in these same categories have been shown by others to be differentially expressed in muscle biopsies of muscular dystrophy patients. The C. elegans model may serve as a convenient vehicle for future genetic and chemical screens to search for new drug targets.  相似文献   

7.
8.
秦峰松  杨崇林 《生命科学》2006,18(5):419-424
自20世纪60年代开始,秀丽线虫作为重要的模式生物在生命科学的发展过程中发挥着举足轻重的作用。线虫中的许多重大发现为人们理解复杂的细胞生命活动做出了极大的贡献。本文对秀丽线虫的研究历史、重要成果及研究前景作一简要综述。  相似文献   

9.
秀丽隐杆线虫是一种结构简单且与人类基因在功能上具有高度保守性的模式生物,因其特点鲜明,所以广泛应用于人类疾病研究中,并在2型糖尿病研究中备受关注。目前,2型糖尿病发病机制尚未完全明确,现有的治疗手段会对人体带来许多副作用。利用秀丽隐杆线虫建立2型糖尿病研究模型,与其他2型糖尿病细胞模型和动物模型相比会带来不同的研究策略。本文综述了近年国内外秀丽隐杆线虫模型在2型糖尿病中相关研究进展,为后续研究提供理论参考。  相似文献   

10.
Much of the recent interest in aging research is due to the discovery of genes in a variety of model organisms that appear to modulate aging. A large amount of research has focused on the use of such long-lived mutants to examine the fundamental causes of aging. While model organisms do offer many advantages for studying aging, it also critical to consider the limitations of these systems. In particular, ectothermic (poikilothermic) organisms can tolerate a much larger metabolic depression than humans. Thus, considering only chronological longevity when assaying for long-lived mutants provides a limited perspective on the mechanisms by which longevity is increased. In order to provide true insight into the aging process additional physiological processes, such as metabolic rate, must also be assayed. This is especially true in the nematode Caenorhabditis elegans, which can naturally enter into a metabolically reduced state in which it survives many times longer than its usual lifetime. Currently it is seen as controversial if long-lived C. elegans mutants retain normal metabolic function. Resolving this issue requires accurately measuring the metabolic rate of C. elegans under conditions that minimize environmental stress. Additionally, the relatively small size of C. elegans requires the use of sensitive methodologies when determining metabolic rates. Several studies indicating that long-lived C. elegans mutants have normal metabolic rates may be flawed due to the use of inappropriate measurement conditions and techniques. Comparisons of metabolic rate between long-lived and wild-type C. elegans under more optimized conditions indicate that the extended longevity of at least some long-lived C. elegans mutants may be due to a reduction in metabolic rate, rather than an alteration of a metabolically independent genetic mechanism specific to aging.  相似文献   

11.
秀丽隐杆线虫因其结构简单、易于培养、生命周期短等特点作为一种模式生物已广泛应用于神经系统、衰老机制及细胞程序性死亡的研究。与高等生物不同,秀丽隐杆线虫缺少适应性免疫途径,只有先天免疫途径在抗病原菌、抗氧化应激等方面发挥重要的作用。其体内的胰岛素/胰岛素样生长因子(insulin/ IGF-1)、转化生长因子β(transforming growth factor β,TGF-β)、丝裂原激活的蛋白激酶(mitogen activated protein kinases,MAPK)和细胞程序性死亡(programmed cell death,PCD)4条免疫相关信号转导途径在不同的环境发挥着主要作用。同时,秀丽隐杆线虫的先天免疫系统在进化中有许多保守之处,这为高等生物的免疫机制研究提供了新思路。据此,就有关秀丽隐杆线虫先天免疫信号转导途径的研究进展进行了简述,期望能为人类等高等生物相关联的免疫作用研究提供借鉴和参考。  相似文献   

12.
Li D  Wang M 《BioTechniques》2012,52(3):173-176
The nematode Caenorhabditis elegans is an important model animal for biological research. Currently, transgenic C. elegans strains are mainly generated by injecting DNA encoding a gene of interest, in combination with a reporter gene, into the gonad. With this approach, the interpretation of negative results, such as the failure to observe reporter expression, is frequently required. Single, selectable vectors are urgently required. Internal ribosome entry site (IRES) elements are known to bind the eukaryotic ribosomal translation initiation complex and independently promote translation initiation. Bioinformatic analysis predicted an IRES motif upstream of the start codon of the C. elegans Hsp-3 gene. While this sequence has a Y-shaped double-hairpin secondary structure characteristic of IRES elements, it was unclear if it could function as an IRES. In the present study, this predicted Hsp-3 IRES was incorporated into a bicistronic vector driven by the myo-3 promoter, which allowed co-expression of RFP and GFP genes in the muscle tissue of C. elegans and thereby demonstrated that this IRES element is functional. This vector provides a novel, powerful tool for C. elegans research.  相似文献   

13.
Genes linked to human diseases often function in evolutionarily conserved pathways, which can be readily dissected in simple model organisms. Because of its short lifespan and well-known biology, coupled with a completely sequenced genome that shares extensive homology with that of mammals, Caenorhabditis elegans is one of the most versatile and powerful model organisms. Research in C. elegans has been instrumental for the elucidation of molecular pathways implicated in many human diseases. In this review, we introduce C. elegans as a model organism for biomedical research and we survey recent relevant findings that shed light on the basic molecular determinants of human disease pathophysiology. The nematode holds promise of providing clear leads towards the identification of potential targets for the development of new therapeutic interventions against human diseases.  相似文献   

14.
15.
线虫(Caenorhabditis elegans)是重要的模式生物,其基因组序列分析工作于1998年底基本完成,已有19000多个基因被鉴定。本文概述线虫基因组研究中遗传图谱、物理图谱、序列测定和基因识别等方面的研究成果,以及线虫基因组计划将对生命科学研究产生的影响。  相似文献   

16.
We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.  相似文献   

17.
Morphogenesis is the process by which multicellular organisms transform themselves from a ball of cells into an organized animal. Certain virtues of Caenorhabditis elegans make it an excellent model system for the study of this process: it is genetically tractable, develops as a transparent embryo with small cell-numbers, and yet still contains all the major tissues typical of animals. Furthermore, certain morphogenetic events are also amenable to study by direct manipulation of the cells involved. Given these advantages, it has been possible to use C. elegans to investigate the different ways in which the actin cytoskeleton drives the cellular rearrangements underlying morphogenesis, through regulated polymerization or actomyosin contraction. Recent insights from this system have determined the involvement in morphogenesis of key proteins, including the actin-regulating WASP and Ena proteins, potential guidance molecules such as the Eph and Robo receptors, and the cell-cell signaling proteins of the Wnt pathway.  相似文献   

18.
Kitagawa R  Law E  Tang L  Rose AM 《Current biology : CB》2002,12(24):2118-2123
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.  相似文献   

19.
Since its establishment as a model organism, Caenorhabditis elegans has been an invaluable tool for biological research. An immense spectrum of questions can be addressed using this small nematode, making it one of the most versatile and exciting model organisms. Although the many tools and resources developed by the C. elegans community greatly facilitate new discoveries, they can also overwhelm newcomers to the field. This Review aims to familiarize new worm researchers with the main resources, and help them to select the tools that are best suited for their needs. We also hope that it will be helpful in identifying new research opportunities and will promote the development of additional resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号