首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Y Li  F Chen  J Nie  D Yang 《Carbohydrate polymers》2012,90(4):1445-1451
The core-shell structure nanofibers of poly(lactic acid)/chitosan with different weight ratios were successfully electrospun from homogeneous solution. The preparation process was more simple and effective than double-needle electrospinning. The nanofibers were obtained with chitosan in shell while poly(lactic acid) in core attributing to phase separation, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The electrospun nanofibrous membrane was evaluated in vitro by using mouse fibroblasts (L929) as reference cell lines. Cell culture results indicated that these materials were good in promoting cell growth and attachment, thus they could be used for tissue engineering and wound healing dressing.  相似文献   

2.
Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fibrous mats were prepared by electrospinning technique. ZnO nanoparticles of size ∼160 nm was synthesized and characterized by UV spectroscopy, dynamic light scattering (DLS), XRD and infrared spectroscopy (IR). SA/PVA electrospinning was further carried out with ZnO with different concentrations (0.5, 1, 2 and 5%) to get SA/PVA/ZnO composite nanofibers. The prepared composite nanofibers were characterized using FT-IR, XRD, TGA and SEM studies. Cytotoxicity studies performed to examine the cytocompatibility of bare and composite SA/PVA fibers indicate that those with 0.5 and 1% ZnO concentrations are less toxic where as those with higher concentrations of ZnO is toxic in nature. Cell adhesion potential of this mats were further proved by studying with L929 cells for different time intervals. Antibacterial activity of SA/PVA/ZnO mats were examined with two different bacteria strains; Staphylococcus aureus and Escherichia coli, and found that SA/PVA/ZnO mats shows antibacterial activity due to the presence of ZnO. Our results suggest that this could be an ideal biomaterial for wound dressing applications once the optimal concentration of ZnO which will give least toxicity while providing maximum antibacterial activity is identified.f  相似文献   

3.
Electrospinning, a simple and versatile method to fabricate nanofibrous supports, has attracted attention in the field of enzyme immobilization. Biocomposite nanofibers were fabricated from mixed PVA/BSA solution and the effects of glutaraldehyde treatment, initial BSA concentration and PVA concentration on protein loading were investigated. Glutaraldehyde cross-linking significantly decreased protein release from nanofibers and BSA loading reached as high as 27.3% (w/w). In comparison with the HRP immobilized into the nascent nanofibrous membrane, a significant increase was observed in the activity retention of the enzyme immobilized into the PVA/BSA biocomposite nanofibers. The immobilized HRP was able to tolerate much higher concentrations of hydrogen peroxide than the free enzyme and thus the immobilized enzyme did not demonstrate substrate inhibition. The immobilized HRP retained ⿼50% of the free enzyme activity at 6.4 mM hydrogen peroxide and no significant variation was observed in the KM value of the enzyme for hydrogen peroxide after immobilization. In addition, reusability tests showed that the residual activity of the immobilized HRP were 73% after 11 reuse cycles. Together, these results demonstrate efficient immobilization of HRP into electrospun PVA/BSA biocomposite nanofibers and provide a promising immobilization strategy for biotechnological applications.  相似文献   

4.
Nano-fibres containing quaternised chitosan (QCh) have been successfully prepared by electrospinning of QCh solutions mixed with poly(vinyl alcohol) (PVA). The average fibre diameter is in the range of 60-200 nm. UV irradiation of the composite electrospun nano-fibrous mats containing triethylene glycol diacrylate as cross-linking agent has resulted in stabilising of the nano-fibres against disintegration in water or water vapours. Microbiological screening has demonstrated the antibacterial activity of the photo-cross-linked electrospun mats against Staphylococcus aureus and Escherichia coli. The obtained nano-fibrous electrospun mats are promising for wound-healing applications.  相似文献   

5.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

6.
Core-shell structure nanofibers of sodium alginate/poly(ethylene oxide) were prepared via electrospinning their dispersions in water solution. The core-shell structure morphology of the obtained nanofibers was viewed under scanning electron microscope (SEM) and transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) analysis was used to further quantify the chemical composition of the core-shell composite SA/PEO nanofibers surface in detail. Furthermore, one-step cross-linking method through being immersed in CaCl2 solution was investigated to improve the anti-water property of the electrospun nanofibers mats in order to facilitate their practical applications as tissue engineering scaffolds, and the changes of the structural of nanofibers before and after cross-linking was characterized by Fourier transform infrared (FT-IR). Indirect cytotoxicity assessment indicated that SA/PEO nanofibers membrane was nontoxic to the fibroblasts cells, and cell culture suggested that SA/PEO nanofibers tended to promote fibroblasts cells attachment and proliferation. It was assumed that the nanofibers membrane of electrospun SA/PEO could be used for tissue engineering scaffolds.  相似文献   

7.
Jia B  Zhou J  Zhang L 《Carbohydrate research》2011,(11):1337-1341
Nano-fibrous mats have been successfully prepared by electrospinning of the blend solutions of cationic cellulose derivatives (PQ-4) and polyvinyl alcohol (PVA). Effects of the blending ratio and applied voltage on the morphology and diameter of the electrospun nano-fibers were investigated. The average diameter of the PQ-4/PVA blend fibers was in the range of 150–250 nm. The electrospinning process became instable and the fiber diameter distribution broadened with increasing PQ-4 content and applied voltage. The antibacterial activity of electrospun PQ-4/PVA blend mats against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus indicated potential for biomedical use.  相似文献   

8.
The interaction of fractionated poly(acrylic acid)s (PAA) with bovine serum albumin (BSA) has been studied by measuring the hydrolysis rate of p-nitrophenyl acetate catalysed by BSA in the presence of PAA. The binding of PAA with BSA, which prohibits the catalytic action of BSA, increases with increasing molecular weight of PAA. The change in the electronic spectra of BSA-PAA solutions supports this molecular weight dependence. Circular dichroism of BSA shows that the binding of PAA does not induce any conformational change in BSA.  相似文献   

9.
Electrospun composite scaffolds show high ability to be used in regenerative medicine and drug delivery, due to the nanofibrous structure and high surface area to volume ratio. In this study, we used nanofibrous scaffolds fabricated by chitosan (CS), poly(vinyl alcohol) (PVA), carbopol, and polycaprolactone using a dual electrospinning technique while curcumin (Cur) incorporated inside of the CS/PVA fibers. Scaffolds were fully characterized via scanning electron microscopy, water contact angle, tensile measurement, hydration, protein adsorption, and wrinkled tests. Furthermore, viability of the buccal fat pad-derived mesenchymal stem cells (BFP-MSCs) was also investigated using MTT assay for up to 14 days while cultured on these scaffolds. Cell cycle assay was also performed to more detailed evaluation of the stem cells growth when grown on scaffolds (with and without Cur) compared with the culture plate. Results demonstrated that Cur loaded nanofibrous scaffold had more suitable capability for water absorption and mechanical properties compared with the scaffold without Cur and it could also support the stem cells viability and proliferation. Cur release profile showed a decreasing effect on BFP-MSCs viability in the initial stage, but it showed a positive effect on stem cell viability in a long-term manner. In general, the results indicated that this nanofibrous scaffold has great potential as a delivery of the Cur and BFP-MSCs simultaneously, and so holds the promising potential for use in various regenerative medicine applications.  相似文献   

10.
11.
Diffusion of bovine serum albumin in a neutral polymer solution   总被引:3,自引:0,他引:3  
G D Phillies 《Biopolymers》1985,24(2):379-386
The diffusion coefficient D of bovine serum albumin through various solutions (pH 7.0, 0.5M NaCl) of polythylene oxide (Mw ~ 1 × 105, 3 × 105) was studied with quasielastic light scattering. In solutions of the 1 × 105 polymer solution at polymer concentrations above 0.5 g/L, D is considerably greater than would have been expected from the viscosity of water:polymer mixtures, the deviations being larger at low protein concentration that at high protein concentration. With either polymer, D falls with increasing protein concentration.  相似文献   

12.
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high-shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained when PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible. The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress-strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.  相似文献   

13.
《Process Biochemistry》2010,45(10):1713-1719
Cibacron Blue F3GA (CB) was covalently attached onto the bacterial cellulose (BC) nanofibers for human serum albumin (HSA) depletion from human serum. The BC nanofibers were produced by Acetobacter xylinum in the Hestrin–Schramm medium in a static condition for 14 days. The CB content of the BC nanofibers was 178 μmol/g. The specific surface area of the BC nanofibers was determined to be 914 m2/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA on the BC nanofibers was very low (1.4 mg/g polymer). CB attachment onto the BC nanofibers significantly increased the HSA adsorption (1800 mg/g). The maximum HSA adsorption was observed at pH 5.0. The HSA adsorption capacity decreased drastically with an increase of the aqueous phase concentration of sodium chloride. The elution studies were performed by adding 1 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the binding of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 96.5% for all studied concentrations. Proteins in the serum and eluted portion were analyzed by SDS-PAGE for testing the efficiency of HSA depletion from human serum. Eluted proteins include mainly HSA.  相似文献   

14.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

15.
Orsi NM  Leese HJ 《Theriogenology》2004,61(2-3):561-572
Bovine serum albumin (BSA) is an embryotrophic macromolecule used in embryo culture media, which is commonly replaced with synthetic compounds, such as polyvinyl alcohol (PVA). This study compared the effect of BSA and PVA on the development, blastocyst cell number and amino acid metabolism of preimplantation bovine embryos in vitro. Embryos were produced by in vitro maturation and fertilization of immature oocytes from abattoir-derived ovaries. Zygotes were cultured in synthetic oviduct fluid with either 4 mg/ml BSA (SOFaaBSA) or 1 mg/ml PVA (SOFaaPVA) in microdrops with a mineral oil overlay at 39 degrees C under a 5% O2/5% CO2/90% N2 atmosphere. Blastocyst rate and cell numbers were determined after 123 h of culture. In parallel, single expanding blastocysts grown in either medium were incubated in microdrops for 12 h. Amino acid profile of spent drops was determined by high performance liquid chromatography. Replacing BSA with PVA depressed blastocyst rate and cell numbers, and led to quantitative and qualitative differences in amino acid appearance, disappearance and turnover. These differences could partly be due to an increase in free intracellular amino acid concentration in SOFaaBSA embryos derived from hydrolysis of endocytosed BSA, and argue against the inclusion of PVA in bovine embryo culture media.  相似文献   

16.
Interpenetrating polymer networks (IPN), as polymer hydrogels composed of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), which exhibited electrical sensitive behavior were prepared. The swelling behavior of the IPN/HA IPN was studied by immersing the gel in various concentrations of aqueous NaCl solutions and various pH buffer solutions. The response of the PVA/HA IPN to electric fields stimuli was also investigated. When swollen IPN was placed between a pair of electrodes, and an electric field applied, it exhibited bending behavior. The PVA/HA IPN also displayed stepwise bending behavior, depending on the magnitude of the electric stimulus. Also, for use in biosensors application, their bending behavior was studied in Hank's solution at pH 7.4.  相似文献   

17.
Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.  相似文献   

18.
In this work, we report the formation of complexes by self-assembly of bovine serum albumin (BSA) with a poly(ethylene glycol) lipid conjugate (PEG2000-PE) in phosphate saline buffer solution (pH 7.4). Three different sets of samples have been studied. The BSA concentration remained fixed (1, 0.01, or 0.001 wt % BSA) within each set of samples, while the PEG2000-PE concentration was varied. Dynamic light scattering (DLS), rheology, and small-angle X-ray scattering (SAXS) were used to study samples with 1 wt % BSA. DLS showed that BSA/PEG2000-PE aggregates have a size intermediate between a BSA monomer and a PEG2000-PE micelle. Rheology suggested that BSA/PEG2000-PE complexes might be surrounded by a relatively compact PEG-lipid shell, while SAXS results showed that depletion forces do not take an important role in the stabilization of the complexes. Samples containing 0.01 wt % BSA were studied by circular dichroism (CD) and ultraviolet fluorescence spectroscopy (UV). UV results showed that at low concentrations of PEG-lipid, PEG2000-PE binds to tryptophan (Trp) groups in BSA, while at high concentrations of PEG-lipid the Trp groups are exposed to water. CD results showed that changes in Trp environment take place with a minimal variation of the BSA secondary structure elements. Finally, samples containing 0.001 wt % BSA were studied by zeta-potential experiments. Results showed that steric interactions might play an important role in the stabilization of the BSA/PEG2000-PE complexes.  相似文献   

19.
Association of bovine serum albumin (BSA) on heating in the presence and absence of 2% xylose has been studied using dynamic light scattering and sedimentation velocity. When 3% solutions of the protein alone are heated at 95°C association products are formed with molar masses of 2 × 106g/mol, a value which is independent of the time of heating. These aggregates can be dissociated in solvents that disrupt non-covalent bonds. When the reducing sugar xylose is present there is a continuous change in the hydrodynamic properties with time. After 80 min a molar mass in excess of 7 × 106g/mol is obtained. This increase in molar mass is attributed to additional non-disulphide linkages resulting from the Maillard reaction. Information about the gross conformation of the Maillard induced association products has been obtained from MHKS (Mark-Houwink-Kuhn-Sakarada) double logarithmic plots of D20,w and s20,w against molar mass. The values of the MHKS coefficients obtained are most consistent with a linear rod: i.e. the association is of an end-to-end type  相似文献   

20.
Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy   总被引:41,自引:0,他引:41  
Summary Specimens infused with or suspended in a mixture of 10–30% poly(vinylpyrrolidone) and 2.07–1.61m sucrose can often be more easily frozen-sectioned than those infused with sucrose alone. The pH of such a mixture can be efficiently adjusted to neutrality by using Na2CO3. Use of poly(vinylpyrrolidone) causes little or no increase in the background level of immunolabelling. Adsorption staining of ultrathin frozen sections with a mixture of uranyl acetate and poly(vinyl alcohol), i.e. a simple thin-embedding of the sections in such a mixture, produces positive staining effects that are often enough to delineate structures of many organelles. When OsO4-treated frozen sections are stained with uranyl acetate and further adsorption-stained with a mixture of lead citrate and poly(vinyl alcohol), the overall staining effects are similar to those observed in double-stained conventional sections.A large portion of the findings was reported as a part of the author's presentation in the 11th International Congress on Electron Microscopy, held in Kyoto, Japan, in 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号