首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmia-esophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the trachea and esophagus fail to separate. Mouse embryos heterozygous for the null allele, Sox2(EGFP), appear normal. However, further reductions in Sox2, using Sox2(LP) and Sox2(COND) hypomorphic alleles, result in multiple abnormalities. Approximately 60% of Sox2(EGFP/COND) embryos have EA with distal TEF in which Sox2 is undetectable by immunohistochemistry or western blot. The mutant esophagus morphologically resembles the trachea, with ectopic expression of Nkx2.1, a columnar, ciliated epithelium, and very few p63(+) basal cells. By contrast, the abnormal foregut of Nkx2.1-null embryos expresses elevated Sox2 and p63, suggesting reciprocal regulation of Sox2 and Nkx2.1 during early dorsal/ventral foregut patterning. Organ culture experiments further suggest that FGF signaling from the ventral mesenchyme regulates Sox2 expression in the endoderm. In the 40% Sox2(EGFP/COND) embryos in which Sox2 levels are approximately 18% of wild type there is no TEF. However, the esophagus is still abnormal, with luminal mucus-producing cells, fewer p63(+) cells, and ectopic expression of genes normally expressed in glandular stomach and intestine. In all hypomorphic embryos the forestomach has an abnormal phenotype, with reduced keratinization, ectopic mucus cells and columnar epithelium. These findings suggest that Sox2 plays a second role in establishing the boundary between the keratinized, squamous esophagus/forestomach and glandular hindstomach.  相似文献   

3.
4.
5.
6.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   

7.
8.
Although retinoic acid (RA) has been implicated as one of the diffusible signals regulating forebrain development, patterning of the forebrain has not been analyzed in detail in knockout mouse mutants deficient in embryonic RA synthesis. We show that the retinaldehyde dehydrogenase 2 (RALDH2) enzyme is responsible for RA synthesis in the mouse craniofacial region and forebrain between the 8- and 15-somite stages. Raldh2-/- knockout embryos exhibit defective morphogenesis of various forebrain derivatives, including the ventral diencephalon, the optic and telencephalic vesicles. These defects are preceded by regionally decreased cell proliferation in the neuroepithelium, correlating with abnormally low D-cyclin gene expression. Increases in cell death also contribute to the morphological deficiencies at later stages. Molecular analyses reveal abnormally low levels of FGF signaling in the craniofacial region, and impaired sonic hedgehog signaling in the ventral diencephalon. Expression levels of several regulators of diencephalic, telencephalic and optic development therefore cannot be maintained. These results unveil crucial roles of RA during early mouse forebrain development, which may involve the regulation of the expansion of neural progenitor cells through a crosstalk with FGF and sonic hedgehog signaling pathways.  相似文献   

9.
Proper dorsal--ventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Previous studies have suggested that midline tissue-derived Sonic hedgehog (Shh) molecules play critical roles in establishing the bilateral eye fields and in determining the proximal--distal axis of the eye primordium. Here, we have examined the temporal requirements for Shh during the optic vesicle to optic cup transition and after early optic cup formation in chick embryos. Both misexpressing Shh by virus and blocking Shh activity by antibodies resulted in disruption of ventral ocular tissues. Decreasing endogenous Shh signals unexpectedly revealed a sharp morphological boundary subdividing dorsal and ventral portions of the optic cup. In addition, Shh signals differentially influenced expression patterns of genes involved in ocular tissue specification (Pax6, Pax2, and Otx2) and dorsal--ventral patterning (cVax) within the ventral but not dorsal optic cup. Ectopic Shh suppressed expression of Bone Morphogenetic Protein 4 (BMP4) in the dorsal retina, whereas reducing endogenous Sonic hedgehog activity resulted in a ventral expansion of BMP4 territory. These results demonstrate that temporal requirements for Shh signals persist after the formation of the optic cup and suggest that the early vertebrate optic primordium may be subdivided into dorsal and ventral compartments. We propose a model in which ventrally derived Shh signals and dorsally restricted BMP4 signals act antagonistically to regulate the growth and specification of the optic primordium.  相似文献   

10.
11.
The lateral hypothalamic syndrome of feeding disorders may not involve the hypothalamus per se, nor is it simply an impairment of feeding behavior. Recent work has forced revisions in traditional concepts regarding the role of the hypothalamus in the control of feeding. At present, it seems clear that hypothalamic damage disrupts nonspecific contributions to feeding behavior, by damaging dopaminergic and other fibers of passage coursing through the ventral diencephalon, and that the resultant aphagia reflects a general disruption of all voluntary behavior that includes feeding but is not restricted to it. Neurological dysfunctions such as akinesia, catalepsy, and sensory neglect are prominent and indicate a broad activational disorder reminiscent of Parkinson's disease. In the absence of a clear notion of how feeding is controlled by the brain, it seems premature to consider animals with experimental lesions in the hypothalamus (or elsewhere in the brain) as appropriate models of anorexia nervosa.  相似文献   

12.
The mammalian foregut gives rise to the dorsally located esophagus and stomach and the ventrally located trachea and lung. Proper patterning and morphogenesis of the common foregut tube and its derived organs is essential for viability of the organism at birth. Here, we show that conditional inactivation of BMP type I receptor genes Bmpr1a and Bmpr1b (Bmpr1a;b) in the ventral endoderm leads to tracheal agenesis and ectopic primary bronchi. Molecular analyses of these mutants reveal a reduction of ventral endoderm marker NKX2-1 and an expansion of dorsal markers SOX2 and P63 into the prospective trachea and primary bronchi. Subsequent genetic experiments show that activation of canonical WNT signaling, previously shown to induce ectopic respiratory fate in otherwise wild-type mice, is incapable of promoting respiratory fate in the absence of Bmpr1a;b. Furthermore, we find that inactivation of Sox2 in Bmpr1a;b mutants does not suppress ectopic lung budding but does rescue trachea formation and NKX2-1 expression. Together, our data suggest that signaling through BMPR1A;B performs at least two roles in early respiratory development: first, it promotes tracheal formation through repression of Sox2; and second, it restricts the site of lung bud initiation.  相似文献   

13.
We have previously shown that retinoic acid (RA) synthesized by the retinaldehyde dehydrogenase 2 (RALDH2) is required in forebrain development. Deficiency in RA due to inactivation of the mouse Raldh2 gene or to complete absence of retinoids in vitamin-A-deficient (VAD) quails, leads to abnormal morphogenesis of various forebrain derivatives. In this study we show that double Raldh2/Raldh3 mouse mutants have a more severe phenotype in the craniofacial region than single null mutants. In particular, the nasal processes are truncated and the eye abnormalities are exacerbated. It has been previously shown that retinoids act mainly on cell proliferation and survival in the ventral forebrain by regulating SHH and FGF8 signaling. Using the VAD quail model, which survives longer than the Raldh-deficient mouse embryos, we found that retinoids act in maintaining the correct position of anterior and dorsal boundaries in the forebrain by modulating FGF8 anteriorly and WNT signaling dorsally. Furthermore, BMP4 and FGF8 signaling are affected in the nasal region and BMP4 is ventrally expanded in the optic vesicle. At the optic cup stage, Pax6, Tbx5 and Bmp4 are ectopically expressed in the presumptive retinal pigmented epithelium (RPE), while Otx2 and Mitf are not induced, leading to a dorsal transdifferentiation of RPE to neural retina. Therefore, besides being required for survival of ventral structures, retinoids are involved in restricting anterior identity in the telencephalon and dorsal identity in the diencephalon and the retina.  相似文献   

14.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

15.
Cytoarchitectonics of hypothalamic area of diencephalon of the sturgeons was studied in serial sections by techniques of Nissl staining and Bielschowski impregnation in Viktorov’s modification. The hypothalamus was shown to be the most expanded area of diencephalon and forms its the most ventral part. The hypothalamic area of four studied sturgeons, the hausen, Huso huso L., Kura sturgeon, Acipenser guldenstaedtii persicus n. Kurensis Belyaeff, Caspian sturgeon, Ac. stellatus Pall. and the barbel sturgeon Ac. nudioventris Lov. was found to have similar structure. Eleven nerve structures are identified and described in the hypothalamic area: dorsal, ventral, and caudal periventricular zones, rostral and dorsal hypothalamic nuclei, ventral and ventrolateral hypothalamic nuclei, diffuse and central nuclei of the inferior lobes, nucleus of the vascular sac, and mammillary nucleus. Peculiarities and common features of organization of four major parts of hypothalamus of the sturgeons are considered in comparison with those of other ray-finned fish. The performed analysis indicates a high level of development of hypothalamus of the sturgeons.  相似文献   

16.
The cavefish morph of the Mexican tetra (Astyanax mexicanus) is blind at adult stage, although an eye that includes a retina and a lens develops during embryogenesis. There are, however, two major defects in cavefish eye development. One is lens apoptosis, a phenomenon that is indirectly linked to the expansion of ventral midline sonic hedgehog (Shh) expression during gastrulation and that induces eye degeneration. The other is the lack of the ventral quadrant of the retina. Here, we show that such ventralisation is not extended to the entire forebrain because fibroblast growth factor 8 (Fgf8), which is expressed in the forebrain rostral signalling centre, is activated 2 hours earlier in cavefish embryos than in their surface fish counterparts, in response to stronger Shh signalling in cavefish. We also show that neural plate patterning and morphogenesis are modified in cavefish, as assessed by Lhx2 and Lhx9 expression. Inhibition of Fgf receptor signalling in cavefish with SU5402 during gastrulation/early neurulation mimics the typical surface fish phenotype for both Shh and Lhx2/9 gene expression. Fate-mapping experiments show that posterior medial cells of the anterior neural plate, which lack Lhx2 expression in cavefish, contribute to the ventral quadrant of the retina in surface fish, whereas they contribute to the hypothalamus in cavefish. Furthermore, when Lhx2 expression is rescued in cavefish after SU5402 treatment, the ventral quadrant of the retina is also rescued. We propose that increased Shh signalling in cavefish causes earlier Fgf8 expression, a crucial heterochrony that is responsible for Lhx2 expression and retina morphogenesis defect.  相似文献   

17.
18.
During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial (Ν/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.  相似文献   

19.
Foregut division—the separation of dorsal (oesophageal) from ventral (tracheal) foregut components—is a crucial event in gastro-respiratory development, and frequently disturbed in clinical birth defects. Here, we examined three outstanding questions of foregut morphogenesis. The origin of the trachea is suggested to result either from respiratory outgrowth or progressive septation of the foregut tube. We found normal foregut lengthening despite failure of tracheo-oesophageal separation in Adriamycin-treated embryos, whereas active septation was observed only in normal foregut morphogenesis, indicating a primary role for septation. Dorso-ventral patterning of Nkx2.1 (ventral) and Sox2 (dorsal) expression is proposed to be critical for tracheo-oesophageal separation. However, normal dorso-ventral patterning of Nkx2.1 and Sox2 expression occurred in Adriamycin-treated embryos with defective foregut separation. In contrast, Shh expression shifts dynamically, ventral-to-dorsal, solely during normal morphogenesis, particularly implicating Shh in foregut morphogenesis. Dying cells localise to the fusing foregut epithelial ridges, with disturbance of this apoptotic pattern in Adriamycin, Shh and Nkx2.1 models. Strikingly, however, genetic suppression of apoptosis in the Apaf1 mutant did not prevent foregut separation, indicating that apoptosis is not required for tracheo-oesophageal morphogenesis. Epithelial remodelling during septation may cause loss of cell-cell or cell-matrix interactions, resulting in apoptosis (anoikis) as a secondary consequence.  相似文献   

20.
详细观察和描述了非洲爪蟾Xenopus laevis眼的发生和发育变化过程,并分别对各发育时期视网膜的厚度进行了定量分析.非洲爪蟾眼的发牛开始于眼原基的形成,进而形成视泡;晶状体的发生是在视杯外壁增厚的同时诱导覆盖其上的胚胎外胚层内层增厚,形成预定晶状体板;在视网膜和晶状体共同诱导下,预定角膜上皮变为透明的角膜.在视杯出现之前,预定RPE的厚度由厚变薄,NR层不断地增厚直至结构功能完善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号