首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparative quantitative investigations of organs of Caviomorpha . The weights of the organs: heart, liver, lung, spleen, kidneys and stomach-intestines were measured in nine species of caviomorph rodents. The sizes of these organs were compared using allometry formulae calculated for each organ from the Caviomorpha to the allometric lines of mammals (mouse-to-elephant line). The slopes of the two sets were nearly equal, except for the lung/body slope. In organ sizes, independently from body size, most of the caviomorph species were found to be outlying with respect to the reference Mammalia. Thus, compared to the general mammalian-line the organ sizes of the caviomorph vary between an increase of 47% in the kidneys of Microcavia australis and a decrease of 68% in the spleen weight of Lagostomus maximus . It is argued that these differences in size suggest a strong correlation to the functional importance of the organs, and that the large range of variation in organ size is regarded as a process of functional adaptation to different life styles within caviomorph rodents.  相似文献   

2.
Proteins of whole mitochondria from mouse liver and brain and proteins of liver mitochondrial fractions (plasma and rough membrane fraction) were separated by two-dimensional electrophoresis. Protein patterns of two inbred strains of mouse, C57BL/6J and DBA/2J, and of F1 mice of these two strains were studied. The protein patterns obtained from the different mitochondrial materials were analyzed with regard to their protein composition and the genetic variability of proteins (qualitative and quantitative protein variants). Included in this analysis are data previously obtained from the cytosols and plasma membranes of the same organs and mouse strains. The results showed the following. (1) Mitochondria and organelle-free cell components (cytosol and plasma membranes) have only a few percent of their proteins in common, while two organs, liver and brain, reveal up to approximately 50% organ-nonspecific proteins. The frequency of proteins common to solubilized and structure-bound proteins ranges below 20%. (2) Genetic variability in protein amount occurs much more frequently than genetic variability in protein structure. Liver proteins reveal more genetic variants than brain proteins. Proteins solubilized in the cell show more genetic variation than structure-bound proteins. Furthermore, the results show that with regard to the composition and the genetic variability of proteins, liver and brain differ more in their mitochondria than in their cytosol and plasma membranes.This work was supported by grants from the Deutsche Forschungsgemeinschaft awarded to Sonderforschungsbereich 29.  相似文献   

3.
1. Animals fed a high energy ration had bigger body weight, and bigger heart, brain and genitals then animals fed a normal diet, but they had substantially smaller liver, kidneys, adrenals and thyroid glands than the otherwise smaller animals. Restricted feeding did not necessarily produce smaller organ sizes than normal. 2. The yearly variation in organ sizes was astonishingly large whereas the sex differences were rather rare. 3. For organs like liver, kidneys and thyroid glands the conclusion from the results was independent of the method of expressing the organ mass. The organ sizes seemed to be influenced by many coexisting factors like yearly differences, sex and age of animals, feed and farm.  相似文献   

4.
The levels of expression and genomic organization of genes coding for the major urinary proteins (MUPs) were examined in several stocks of wild-derived mice. Levels of MUP mRNA in the liver varied considerably with M. musculus Brno and M. castaneus males having several-fold more MUP RNA than inbred C57BL/6 males, whereas M. hortulanus, M. caroli and M. cervicolor displayed levels much lower than C57BL/6. Analysis of RNA with MUP cDNAs specific to two different subfamilies of MUP genes revealed that M. caroli and M. cervicolor primarily expressed a MUP mRNA that was less abundant in C57BL/6, suggesting differential expression of subfamilies of genes within the MUP multigene complex. Although inbred males usually have five-fold more MUP mRNA than inbred females, male to female ratios for wild-derived stocks ranged from one to several hundred. Southern blots of genomic DNA hybridized to MUP subfamily probes revealed differences in restriction fragment sizes as well as possible variation in the number of MUP genes in some species. Analysis of urinary proteins from hybrids between C57BL/6 and M. spretus suggested that low MUP expression in M. spretus females was due to cis-acting genetic elements.  相似文献   

5.
Loss-of function mutations in the transmembrane inner ear expressed (Tmie/TMIE) gene have been shown to cause deafness in mice and humans (DFNB6). Previous studies report that the circling mouse can be an animal model for DFNB6. However, the expression pattern of Tmie protein in postnatal developmental stages has not been clearly revealed. In this study we tried to investigate the expression of Tmie protein in the liver, spleen, kidney, and lung, as well as in the cochlea. We examined various tissue samples from five different age groups of C57BL/6J animals. Using western blotting analysis, the expression of Tmie protein in these organs has been identified. The results show that Tmie protein expression in the cochlea has been increased in postnatal developmental stages, indicating that Tmie plays an important role in not only the development and also in the function of the cochlea. The expression pattern of Tmie in adult mouse organs such as the liver, spleen, kidney, and spleen significantly vary in adult rats. The order of Tmie expression level in mice (63 days after birth) was spleen, liver, lung, cochlea, and kidney, whereas in the adult rat it was liver, cochlea, lung, spleen, and kidney.  相似文献   

6.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal and postnatal protein restriction in mice affects organ weight, glomerular number and dimensions, and renal expression of angiotensin receptor mRNA, in both male and female offspring. C57/BL6/129sv mice received either a normal (20% wt/wt; NP) or low (9% wt/wt; LP) protein diet during gestation and postnatal life. Offspring were examined at postnatal day 30. Protein restriction retarded growth of the kidney, liver, spleen, heart, and brain. All organs except the brain weighed less in female than male offspring. Protein restriction increased normalized (to body weight) brain weight, with females having relatively heavier brains than males. The effects of protein restriction were not sex dependent, except that normalized liver weight was reduced in males but increased in females. Glomerular volume, but not number, was greater in female than in male mice. Maternal protein restriction reduced nephron endowment similarly in male and female mice. Renal expression of AT(1A) receptor mRNA was approximately sixfold greater in female than male NP mice, but similar in male LP and female LP mice. We conclude that maternal protein restriction reduces nephron endowment in mice. This effect provides a basis for future studies of developmental programming in the mouse.  相似文献   

7.
The possibility that radiation-induced alterations in gene expression are tissue specific and are related to apoptosis was examined using samples from brain, heart, lung, spleen and intestine from female C57BL6 mice after exposure to 0.2 Gy radiation. Apoptosis was the highest in spleen and intestine, moderate in lung, and absent in brain and heart. However, the mRNA expression of Trp53 and Cdkn1a (p21) after irradiation was not different among the organ types, and immunohistochemistry revealed that all the organs expressed these two proteins after irradiation. When expression patterns of 23 genes in the organs were examined by RT-PCR, neogenine, Apo1, nuclease sensitive element binding protein 1, syntaxin, cyclin G1, hNOP56, paraoxonase and glutathione peroxidase were overexpressed after irradiation in all the organs sampled, suggesting them as universal exposure markers for low-dose radiation. Sialyltransferase may be a candidate for radiation detection in spleen and intestine, which are radiosensitive organs. Because Sod1 (Cu/ZnSOD) and alphaB crystalline were expressed only in spleen, and protein tyrosine kinase and platelet membrane glycoprotein lib were expressed in both spleen and lung, these genes may also be potential markers for detection of radiation exposure, especially low-dose radiation, in these tissues. These data suggested possible tissue-specific markers of low-dose radiation exposure and suggested potential novel genetic modifiers of radiation response.  相似文献   

8.
Hindlimb unloading (HU) is known to induce physiological alterations in various organ systems that mimic some responses observed after exposure to microgravity. In the present study, the effects of up to 4 wk of HU on the liver were assessed in male Wistar rats and two mouse strains: endotoxin-sensitive C57BL/6 mice and endotoxin-resistant C3H/HEJ mice. Plasma levels of endotoxin, a known stimulator of hepatic injury, were measured in portal and systemic blood samples. Endotoxin was elevated by approximately 50% in portal blood samples of mice and rats but was not detectable in systemic blood. This low-grade portal endotoxemia was associated with hepatic injury in rats and C57BL/6 mice as indicated by inflammation and elevated serum transaminase activities. Blood levels of the cytokine TNF-alpha were increased by approximately 50% in C57BL/6 mice; no significant elevation of this cytokine was detected in rats. Messenger RNA levels of the acute-phase proteins serum amyloid A, haptoglobin, and lipopolysaccharide binding protein were significantly enhanced after 3 wk of HU in endotoxin-sensitive rodents. In contrast, no histological changes or significant increases in serum enzyme activity were detected after HU in C3H/HEJ mice despite portal endotoxin levels of 222 +/- 83.4 pg/ml. At the 3-wk time point, expression of acute-phase proteins was not elevated in C3H/HEJ mice; however, expression after 4 wk of HU was similar to endotoxin-sensitive rodents. In conclusion, these findings indicate that HU induced mild portal endotoxemia, which contributed to the observed hepatic injury in endotoxin-sensitive rodents.  相似文献   

9.
The genetic variability of membrane proteins (structure-bound proteins) and cytosol proteins (water-soluble proteins) was investigated in two inbred strains of the mouse, C57BL/6J and DBA/2J. Membrane proteins and cytosol were isolated from the brain and liver of the mouse. The proteins were separated by two-dimensional electrophoresis. A high number of genetic variant proteins (brain, 30; liver, 72) was found in the cytosol. Most of these variants represented changes in the amount of proteins. Electrophoretic mobility changes occurred only in about 1% (brain, 6; liver, 9) of all protein spots of a two-dimensional pattern. In contrast to the cytosol proteins, no genetic variation was detected among the membrane proteins, not even for the quantitative characteristics of the protein spots. The results obtained for the two classes of proteins suggest that the degree of variability in the amount of proteins is related to the degree of variability in the structure of proteins.  相似文献   

10.
11.
Cadmium is a toxic metal that induces the expression of metallothionein genes in many tissues and that binds avidly to metallothionein, a soluble transition metal binding protein. The present study examined the temporal pattern and magnitude of accumulation of metallothionein mRNA in liver of C57BL/6J mice of various ages treated with cadmium. In adult female mice, accumulation was dependent on the dosage level of cadmium and related to the concentration of this metal in liver. The accumulation of metallothionein mRNA in liver depended on age at exposure to cadmium. Intraperitoneal administration of 2 mg of cadmium per kg provoked small increases (two- to threefold) in levels of metallothionein mRNA in livers of 7- and 14-day-old mice. In contrast, cadmium treatment of 28- and 56-day-old mice resulted in 12- to 19-fold increases in levels of metallothionein mRNA in liver with maximum increases occurring 3 to 4 hr after treatment. Because similar patterns for the accumulation of cadmium of liver were found in 7-, 28-, and 56-day-old mice, observed age-dependent differences in induction of metallothionein mRNA in liver were probably not due to differences in the accumulation of cadmium in this organ. Taken together, these data suggest that tissue-specific factors controlling the expression of metallothionein genes may account for developmental variation in the inducibility of these genes by cadmium. Ontogenic variation in accumulation of metallothionein mRNA after cadmium treatment may be a factor in developmental variation in the acute lethality of cadmium in C57BL/6J mice.  相似文献   

12.
Animal species of similar body mass vary widely in basal metabolic rate (BMR). A central problem of evolutionary physiology concerns the anatomical/physiological origin and functional significance of that variation. It has been hypothesized that such interspecific differences in wild animals evolved adaptively from differences in relative sizes of metabolically active organs. In order to minimize confounding phenotypic effects and maximize relevant genetic variation, we tested for intraspecific correlations between body-mass-corrected BMR and masses of four organs (heart, kidney, liver, and small intestine) among six inbred strains of mice. We found significant differences between strains in BMR and in masses of all four organs. Strains with exceptionally high (or low) BMR tended to have disproportionately large (or small) organs. The mass of each organ was correlated with the masses of each of the other three organs. Variation in organ masses accounted for 52% of the observed variation in BMR, of which 42% represented between-strain variation, and 10% represented within-strain variation. This conclusion is supported by published measurements of metabolic rates of tissue slices from the four organs. The correlation between BMR and intestine or heart mass arose exclusively from differences between strains, while the correlation between BMR and liver or kidney mass also appeared in comparing individual mice within the same strain. Thus, even though the masses of the four examined organs account for no more than 17% of total body mass, their high metabolic activities or correlated factors account for much of the variation in BMR among mice. We suggest that large masses of metabolically active organs are subject to natural selection through evolutionary trade-offs. On the one hand, they make possible high-energy budgets (advantageous under some conditions), but on the other hand they are energetically expensive to maintain.  相似文献   

13.
目的建立白介素34转基因小鼠,研究该基因在小鼠中表达对小鼠免疫系统的作用。方法把人的IL34基因插入CMV启动子下,构建转基因表达载体,通过显微注射法建立IL34转基因C57BL/6J小鼠。PCR鉴定IL34转基因小鼠的基因表型,Western blotting检测IL34蛋白的表达水平,组织化学染色观察IL34转基因小鼠重要器官的病理改变。结果建立了2个品系的IL34转基因小鼠。转入的人IL34基因在脾脏中的表达水平高于内源性IL34。组织学分析显示IL34转基因小鼠各重要器官如脑,心,肝,肾,肠等的形态结构均正常,但脾脏的生发中心比较活跃,白髓的范围比野生型小鼠大。结论成功建立了IL34转基因小鼠,IL34基因的过度表达对免疫系统作用需要进一步探讨。  相似文献   

14.
The relationship between the genes controlling heart and adipose lipoprotein lipase in fasted animals has been studied. 32 inbred mouse strains were tested for variations in heart or adipose specific activity and thermolability. The survey revealed that specific activity of heart and adipose lipoprotein lipase varied as much as 3-fold and 20-fold, respectively. In thermolability, up to a 2-fold variation was observed in the lipase in each tissue. The correlation coefficient between variations in heart and adipose lipase was apparently not significant for both parameters studied. Additional studies were performed in two strains, BALB/c and C57BL/6, along with the recombinant inbred set derived from them. The two strains did not show genetic variation for lipoprotein lipase thermolability, although the inactivation rate of heart lipase was higher than that of adipose lipase. However, BALB/c and C57BL/6 displayed significant differences in their levels of lipoprotein lipase specific activity. Thus, strain C57BL/6 showed higher heart activity when compared to BALB/c, whereas the latter showed higher adipose lipase activity when compared to C57BL/6, i.e. an inverse relationship. The specific activity levels of heart and adipose lipoprotein lipase in the recombinant inbred strains derived from BALB/c and C57BL/6 exhibited independent inheritance. Thus, in adipose tissue, a single major gene seems to control the variation observed, while the inheritance pattern of heart activity could imply involvement of more than one gene. Moreover, two out of the seven recombinant strains showed distinct recombinant phenotypes, indicating that separate unlinked genes control the variations found in heart and adipose activity. We conclude that the expression of heart and adipose lipoprotein lipase activity is under independent genetic control.  相似文献   

15.
Aging and age‐related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome‐wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age‐predictive value, albeit with much inter‐ and intraindividual (organ) variation. Relating gene expression changes to pathology‐related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology‐related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology‐related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology‐related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging‐related pathology could provide important new insights into the progress of aging.  相似文献   

16.
The effect of the carcinogen 3-methylcholanthrene (MCA) on protein accumulation in mouse tissues was examined. Administration of the hydrocarbon (250 mg/kg, intraperitoneally) to high-responder C57BL/6 (B6) mice resulted in the induction of five proteins in liver tissue. Quantitative analysis revealed that maximal induction of all five proteins occurred 2 days after MCA administration, with liver protein concentrations returning close to control values by 7 days after the treatment. No consistent effects on the concentrations of other liver proteins were seen. Cell-fractionation studies demonstrate that these proteins appear to be non-microsomal in origin. The induction of the five proteins was tissue-specific, since MCA had no effect on protein accumulation in the B6-mouse kidney, spleen or heart. In addition, their induction appeared to be correlated with the Ah locus, since MCA administration had no effect on the concentrations of the five proteins in the liver of the low-responder DBA/2 (D2) mouse strain. Comparing the extent and time course of this induction with that of previously characterized MCA-induced enzymes, we suggest that these five proteins may represent a new, previously unidentified, set of MCA-induced proteins.  相似文献   

17.
To characterize the mouse bone marrow tissue proteome and investigate the response to radiation damage we took bone marrow before and after 4-Gy gamma-irradiation from mouse strains (C57BL/6 and CBA/Ca) that differ in their short-term and long-term radiation responses and analyzed extracellular proteins by high-resolution 2-DE. Twenty proteins were identified from 71 protein spots in both C57BL/6 and CBA/Ca. We detected significant differences between control and irradiated bone marrow and between genotypes and identified many of the changed proteins by MS. In C57BL/6, 27 spots were significantly different between control and irradiated samples. In CBA/Ca, 18 spots showed significant changes following irradiation. Proteins such as serum albumin, apolipoprotein A-I, ferritin, haptoglobin (Hp) and alpha-1-antitrypsin were changed in irradiated bone marrow of both mouse strains, reflecting an ongoing acute-phase reaction. Several other proteins including serotransferrin, neutrophil collagenase, peroxiredoxin 2 and creatine kinase M chain were changed specifically in an individual mouse strain. The proteomic approach makes an important contribution to characterizing bone marrow proteome and investigating the tissue response of bone marrow to radiation, assists in identifying genotype-dependent responses and provides support for the importance of microenvironmental factors contributing to the overall response.  相似文献   

18.
Activities of 10 lysosomal hydrolase enzymes (beta-hexosaminidase, beta-galactosidase, alpha-galactosidase, alpha-mannosidase, beta-mannosidase, alpha-L-fucosidase, beta-glucuronidase, alpha-glucosidase, alpha-N-acetylgalactosaminidase, and acid phosphatase) were determined in eight organs (brain, liver, kidney, spleen, heart, skeletal muscle, lung, and testis) in males and females of six inbred mouse strains (C57BL/6J, C3H/HeJ, DBA/2J, BALB/cJ, P/J, and 129/J). Examples of enzyme-specific variation, organ-specific variation, and enzyme- and organ-specific variation were found. New enzyme-specific variants with the features of systemic regulators for alpha-L-fucosidase and beta-mannosidase were found. Known variants were detected. Organ-specific variants had some of the properties expected for a new class of genes affecting multiple enzymes: organ-specific regulators.  相似文献   

19.
Protein kinase X (PrKX), karyotypically located on the human X chromosome, is a type I cAMP-dependent protein kinase. Although a specific role for PrKX has not yet been defined, PrKX gene expression in mouse and human tissues has been profiled only by in situ hybridization and Northern blot analyses and not by protein expression. To determine more precisely the PrKX protein levels, we developed specific anti-PrKX antibodies and examined gestationally staged mouse embryo sections by immunohistochemistry. These results showed that PrKX is ubiquitously distributed and highly expressed in murine central nervous system and heart tissues in early developmental stages and in most organs at later stages but was not detected in either connective tissues or bone. Using Western blots to detect PrKX, total protein extracts from eight different adult or fetal human tissues including brain, heart, kidney, liver, lung, pancreas, spleen, and thymus were analyzed. Although PrKX protein was present in each of the tissues tested, the protein levels varied depending on tissue type and developmental stage. Very low protein levels were found in heart tissues from a 5-month-old fetus and from an adult, whereas PrKX proteins were more abundant in fetal brain, kidney, and liver tissues compared with adult samples of the same tissue type.  相似文献   

20.
The widespread prevalence of obesity has lead to extensive research on white adipose tissue (WAT), which frequently uses the C57BL/6J mouse strain as a model. In many studies, results obtained in one WAT depot are often extrapolated to all WAT. However, functional differences among WAT depots are now becoming apparent. Thus, to identify the molecular mechanisms responsible for WAT depot-specific differences under "normal" conditions, four C57BL/6J mouse WAT depots (inguinal, mesenteric, epididymal, and retroperitoneal) were analyzed. Depot proteomic profiles, along with weights, protein contents, adipocyte sizes and oxidative stress were determined. Mesenteric WAT had almost twice the protein content of the other depots analyzed. Mean adipocyte size was highest in epididymal and lowest in mesenteric and inguinal depots. The proteome of inguinal WAT displayed low levels of enzymes involved in ATP generation, glucose and lipid metabolism, and antioxidant proteins. Higher levels of these proteins were observed in mesenteric and epididymal WAT, with variable levels in the retroperitoneal depot. Some of these proteins showed depot-specific correlations with plasma levels of insulin, leptin, and adiponectin. In agreement with the proteomic data, levels of the antioxidant protein heat shock protein β1 (HSPβ1) also were lower in inguinal WAT when analyzed by western blotting and immunohistochemistry. Also, lipid peroxidation products showed similar trends. Our results are consistent with lower triglyceride turnover and lower oxidative stress in inguinal than mesenteric and epididymal WAT. The observed WAT depot-specific differences provide clues as to the mechanisms leading to these depots' respective diverse functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号