首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bone is the major store for Ca(2+) in the body and plays an important role in Ca(2+) homeostasis. During bone formation and resorption Ca(2+) must be transported to and from bone by osteoblasts and osteoclasts, respectively. However, little is known about the Ca(2+) transport machinery in these bone cells. In this study, we examined the epithelial Ca(2+) channel TRPV6 in bone. TRPV6 mRNA is expressed in human and mouse osteoblast-like cells as well as in peripheral blood mononuclear cell-derived human osteoclasts and murine tibial bone marrow-derived osteoclasts. Also other transcellular Ca(2+) transport genes, calbindin-D(9k) and/or -D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+) ATPase (PMCA1b) were expressed in these bone cell types. Immunofluorescence and confocal microscopy on human osteoblasts and osteoclasts and mouse osteoclasts revealed TRPV6 protein at the apical domain and PMCA1b at the osteoidal domain of osteoblasts, whereas in osteoclasts TRPV6 was predominantly found at the bone-facing site. TRPV6 was dynamically expressed in human osteoblasts, showing maximal expression during mineralization of the extracellular matrix. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) did not change TRPV6 expression in both mineralizing and non-mineralizing SV-HFO cultures. Lentiviral transduction-mediated overexpression of TRPV6 in these cells did not alter mineralization. Bone microarchitecture and mineralization were unaffected in Trpv6(D541A/D541A) mice in which aspartate 541 in the pore region was replaced with alanine to render TRPV6 channels non-functional. In summary, TRPV6 and other proteins involved in transcellular Ca(2+) transport are dynamically expressed in bone cells, while TRPV6 appears not crucial for bone metabolism and matrix mineralization in mice.  相似文献   

2.
3.
Many of the contractile regulatory events in smooth muscle reside in various cellular membrane components as functional membrane constituents that interact in a variably complex manner. The physiological handling of ionized calcium (Ca2+), which serves multiple roles as an extracellular signal, a second messenger, and an activator interacting directly with myofilaments to effectuate contractile responses, referred to as Ca2+ signalling processes, represents an integral part of a more complicated membrane transduction mechanism. The subcellular membrane approach toward the understanding of Ca2+ signalling as well as the transduction mechanisms involving membrane receptors, GTP binding proteins, ion channels, membrane-bound enzymes, and the production of intracellular second messengers has made a significant contribution in smooth muscle research for the past decade. This review summarizes the current state of knowledge about the multiplicity of interactions between Ca2+ and various membrane constituents in the surface membranes and sarcoplasmic reticulum, such as Ca2+ binding, Ca2+ ATPase pumps, Ca2+ channels, and Ca2+Na+ or related ion exchangers. A number of recent novel findings from this laboratory have also been discussed. First of all, the technical refinement of membrane separation and characterization, which permits better identification of neuronal membranes in highly innervated smooth muscle tissues, led to the distinction of prejunctional and postjunctional membrane receptors. Secondly, unlike the Ca(2+)-release channels labelled with [3H]inositol 1,4,5-trisphosphate, the other type of internal membrane Ca(2+)-release channels labelled by [3H]ryanodine has been identified only recently in smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Apoptosis inhibition rather than enhanced cellular proliferation occurs in prostate cancer (CaP), the most commonly diagnosed malignancy in American men. Therefore, it is important to characterize residual apoptotic pathways in CaP cells. When intracellular Ca(2+) stores are released and plasma membrane "store-operated" Ca(2+) entry channels subsequently open, cytosolic [Ca(2+)] increases and is thought to induce apoptosis. However, cells incapable of releasing Ca(2+) stores are resistant to apoptotic stimuli, indicating that Ca(2+) store release is also important. We investigated whether release of intracellular Ca(2+) stores is sufficient to induce apoptosis of the CaP cell line LNCaP. We developed a method to release stored Ca(2+) without elevating cytosolic [Ca(2+)]; this stimulus induced LNCaP cell apoptosis. We compared the apoptotic pathways activated by intracellular Ca(2+) store release with the dual insults of store release and cytosolic [Ca(2+)] elevation. Earlier processing of caspases-3 and -7 occurred when intracellular store release was the sole Ca(2+) perturbation. Apoptosis was attenuated in both conditions in stable transfected cells expressing antiapoptotic proteins Bclx(L) and catalytically inactive caspase-9, and in both scenarios inactive caspase-9 became complexed with caspase-7. Thus, intracellular Ca(2+) store release initiates an apoptotic pathway similar to that elicited by the dual stimuli of cytosolic [Ca(2+)] elevation and intracellular store release.  相似文献   

5.
Thioridazine inhibits the activity of the synaptic plasma membrane Ca(2+)-ATPase from pig brain and slightly decreases the rate of Ca(2+) accumulation by synaptic plasma membrane vesicles in the absence of phosphate. However, in the presence of phosphate, thioridazine increases the rate of Ca(2+) accumulation into synaptic plasma membrane vesicles. Phosphate anions diffuse through the membrane and form calcium phosphate crystals, reducing the free Ca(2+) concentration inside the vesicles and the rate of Ca(2+) leak. The higher levels of Ca(2+) accumulation obtained in the presence of thioridazine could be explained by a reduction of the rate of slippage on the plasma membrane ATPase.  相似文献   

6.
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.  相似文献   

7.
Previously, we noted that inorganic phosphate (P(i)), a major component of bone extracellular matrix, induced osteoblast apoptosis (Meleti, Z., Shapiro, I. M., and Adams, C. S. (2000) Bone (NY) 27, 359-366). Since Ca(2+) along with P(i) is released from bone during the resorption process, we advanced the hypothesis that Ca(2+) modulates P(i)-mediated osteoblast apoptosis. To test this hypothesis, osteoblasts were incubated with both ions, and cell death was determined. We noted that a modest increase in the medium Ca(2+) concentrations ([Ca(2+)](e)) of 0.1-1 mm caused a profound and rapid enhancement in P(i)-dependent death of cultured osteoblasts. An elevation in [Ca(2+)](e) alone had no effect on osteoblast viability, whereas Ca(2+) channel blockers failed to inhibit killing of ion pair-treated cells. These results indicated that P(i)-mediated cell death is not dependent on a sustained increase in the cytosolic Ca(2+) concentration. Terminal dUTP nick-end labeling analysis and measurement of caspase-3 activity of the ion pair-treated cells suggested that death was apoptotic. Apoptosis was confirmed using caspase-3 and endonuclease inhibitors. The mitochondrial membrane potential and cytosolic Ca(2+) status of the treated cells were evaluated. After incubation with [Ca(2+) ](e) and P(i), a decrease in mitochondrial fluorescence was noted, suggesting that the ions decreased the mitochondrial transmembrane potential. Subsequent to the fall in mitochondrial membrane potential, there was a transient elevation in the cytosolic Ca(2+) concentration. Results of the study suggest that the ion pair conspire at the level of the plasma membrane to induce intracellular changes that result in loss of mitochondrial function. The subsequent increase in the cytosolic Ca(2+) concentration may trigger downstream events that transduce osteoblast apoptosis.  相似文献   

8.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

9.
The movements of Sagitta are conditioned by the presence of Ca(2+) in the external medium. When this ion is removed from artificial sea water, animals do not move. They swim again when Ca(2+) is present. Among the problems raised by this observation, we have studied the role of Ca(2+) in the contraction of the primary musculature. Physiological experiments show the central importance of the extracellular Ca(2+) and of its translocation through the membrane during the initiation of the contraction. Cytochemical data correlate these observations. They show that Ca(2+) is localized mainly at the level of the plasma membrane, its invaginations and in the poorly developed SR (less than 2% of cell). Like SR, mitochondria accumulate Ca(2+) but do not seem to participate in the regulation of these Ca movements except in abnormal situations. La(3+) blocks the entry of extracellular Ca(2+) and attaches to the membranes; this fixation is not the same on the plasma membrane and in its invaginations. The contractile apparatus of Sagitta primary musculature show remarkable specializations (Duvert and Savineau, 1986). It is composed of ribbon-shaped myofibrils of regular thickness surrounded by external membranes implicated in the fixation and the translocation of a pool of Ca(2+) necessary for initiating contraction. The poorly developed SR and the mitochondria probably modulate the functioning of the two types of fibres (A and B).  相似文献   

10.
We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.  相似文献   

11.
In the presence of ATP and of Mg(2+), human erythrocyte membranes show a phosphatase activity towards p-nitrophenyl phosphate which is activated by low concentrations of Ca(2+). The effect of Ca(2+) is strongly enhanced if either K(+) or Na(+) is also present. Activation of the p-nitrophenyl phosphate phosphatase by Ca(2+) reaches a half-maximum at about 8mum-Ca(2+) and is apparent only when the ion has access to the inner surface of the cell membrane. Ca(2+)-dependent phosphatase activity can only be observed if ATP is at the inner surface of the cell membrane, and the presence of ATP seems to be absolutely necessary, since either its removal or its replacement by other nucleoside triphosphates abolishes the activating effect of Ca(2+). The properties of the (ATP+Ca(2+))-dependent phosphatase are very similar to those of the Ca(2+)-dependent ATPase (adenosine triphosphatase), also present in erythrocyte membranes, which probably is involved in Ca(2+) transport in erythrocytes. The similarities suggest that both activities may be properties of the same molecular system. This view is further supported by the fact that p-nitrophenyl phosphate inhibits to a similar extent Ca(2+)-dependent ATPase activity and ATP-dependent Ca(2+) extrusion from erythrocytes.  相似文献   

12.
Using the patch-clamp technique, we studied the action of charybdotoxin which blocks Ca(2+)-activated large-conductance K+ channels in animal tissue on the slow-activating (SV), Ca(2+)-activated cation channel in the vacuolar membrane of suspension-cells of Chenopodium rubrum L. The toxin reversibly reduced the vacuolar current with EC50 approximately 20 nM suggesting structural similarities between ion channels in animal and plant membranes.  相似文献   

13.
The mechanism of the effects of the lanthanum ion (La(3+)) and the gadolinium ion (Gd(3+)), which are lanthanides, on the function of membrane proteins and the stability of the membrane structure is not well understood. We investigated the effects of La(3+) on the stability of the hexagonal II (H(II)) phase of the phosphatidylethanolamine (PE) membrane at 20 degrees C by small-angle X-ray scattering. As PE membrane we used DPOPE (dipalmitoleoylphosphatidylethanolamine) membrane, which was in the L(alpha) phase in 10 mM PIPES buffer (pH 7.4) at 20 degrees C. An L(alpha) to H(II) phase transition occurred in the DPOPE membrane at 1.4 mM La(3+) in 0 M KCl, and at 0.4 mM La(3+) in 0.5 M KCl and above the critical concentrations the membranes were in the H(II) phase, indicating that La(3+) stabilizes the H(II) phase rather than the L(alpha) phase. The basis vector length, d, of DPOPE and DOPE (dioleoylphosphatidylethanolamine) membranes containing 16 wt% tetradecane in excess water condition did not change with an increase in La(3+) concentration, suggesting that La(3+) did not change the spontaneous curvature of these PE monolayer membranes. The chain-melting transition temperature of the dielaidoylphosphatidylethanolamine membrane increased with an increase in La(3+) concentration, indicating that the lateral compression pressure increased. To elucidate the effects of a small percentage of 'guest' lipids with longer acyl chains than the average length of 'host' lipids on the stability of the H(II) phase, we investigated the effects of the concentration of a guest lipid (DOPE) in a host lipid (DPOPE) membrane on their phase behavior and structure. 12 mol% DOPE induced an L(alpha) to H(II) phase transition in DOPE/DPOPE membrane, without changing the spontaneous curvature of the monolayer membrane. We found that Ca(2+) also induced an L(alpha) to H(II) phase transition in the DPOPE membrane, and compared the effects of Ca(2+) on PE membranes with those of La(3+). Based on these results, we have proposed a new model for the mechanism of the L(alpha) to H(II) phase transition and the stabilization of the H(II) phase by La(3+).  相似文献   

14.
Passive paracellular proximal tubular (PT) and intestinal calcium (Ca(2+)) fluxes have been linked to active sodium (re)absorption. Although the epithelial sodium/proton exchanger, NHE3, mediates apical sodium entry at both these sites, its role in Ca(2+) homeostasis remains unclear. We, therefore, set out to determine whether NHE3 is necessary for Ca(2+) (re)absorption from these epithelia by comparing Ca(2+) handling between wild-type and NHE3(-/-) mice. Serum Ca(2+) and plasma parathyroid hormone levels were not different between groups. However, NHE3(-/-) mice had increased serum 1,25-dihydroxyvitamin D(3). The fractional excretion of Ca(2+) was also elevated in NHE3(-/-) mice. Paracellular Ca(2+) flux across confluent monolayers of a PT cell culture model was increased by an osmotic gradient equivalent to that generated by NHE3 across the PT in vivo and by overexpression of NHE3.( 45)Ca(2+) uptake after oral gavage and flux studies in Ussing chambers across duodenum of wild-type and NHE3(-/-) mice confirmed decreased Ca(2+) absorption in NHE3(-/-) mice compared with wild-type mice. Consistent with this, intestinal calbindin-D(9K), claudin-2, and claudin-15 mRNA expression was decreased. Microcomputed tomography analysis revealed a perturbation in bone mineralization. NHE3(-/-) mice had both decreased cortical bone mineral density and trabecular bone mass. Our results demonstrate significant alterations of Ca(2+) homeostasis in NHE3(-/-) mice and provide a molecular link between Na(+) and Ca(2+) (re)absorption.  相似文献   

15.
《Process Biochemistry》2010,45(4):457-466
Material selection is one of the most important aspects to construct a novel template for tissue regeneration. In this research alginate, bacterial cellulose (BC) and gelatin were selected based on available material and published data to prepare membranes and then the morphology of Swiss mouse embryo fibroblast NIH/3T3 cells on the surface of these membranes was examined to select the best material for the development of a biodegradable skin tissue regeneration template. The cells on alginate membrane crosslinked with Ca2+ (AGM_Ca) showed a spherical morphology and growth retardation, probably due to high calcium content on and in the surface of membrane. This has been confirmed in control experiments in which calcium was added to the culture medium (DMEM medium). The NIH/3T3 cells grown on the BC membrane (BC_M) and membrane of glutaraldehyde (GTA) crosslinked gelatin (GTA_GM) had a polygonal morphology. The proliferation rate of cells on the GTA_GM was faster than that on the BC_M. Therefore the GTA_GM is better than the AGM_Ca and BC_M to apply as a skin tissue regeneration template. Cytotoxic effects of GTA were studied in GTA_GMs prepared using gelatins obtained from cow bones, pork skins, and fish skins. It was found that molar ratio of GTA to gelatin for preparation of membrane should not be higher than 0.033. Cytotoxic effects of GTA were observed on the GTA_GMs prepared with molar ratio higher than 0.033, except pork skin gelatin membrane with a molar ratio, 0.033, which showed the cytotoxic effects on fibroblast cells. The physical morphology of the membranes of cow bone gelatin and fish skin gelatin is stronger and more flexible than that of pork skin gelatin in wet forms. According to these results, it can be suggested that pork skin gelatin might have had less crosslinked points, NH2-sites of lysine molecules than cow bone gelatin and fish skin gelatin. These two gelatins are selected for further development of a template for skin tissue regeneration.  相似文献   

16.
Kastl K  Ross M  Gerke V  Steinem C 《Biochemistry》2002,41(31):10087-10094
By means of the quartz crystal microbalance (QCM) technique, the interaction of annexin A1 with lipid membranes was quantified using solid-supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid-supported lipid bilayers were composed of a first octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer obtained from vesicle fusion. This experimental setup enabled us to determine for the first time rate constants and affinity constants of annexin A1 binding to phosphatidylserine-containing layers as a function of the calcium ion concentration in solution and the cholesterol content within the outer leaflet of the solid-supported bilayer. The results reveal that a decrease in Ca(2+) concentration from 1 mM to 100 microM significantly increases the rate of annexin A1 binding to the membrane independent of the cholesterol content. However, the presence of cholesterol in the membrane altered the affinity constants considerably. While the association constant decreases with decreasing Ca(2+) concentration in the case of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) membranes lacking cholesterol, it remains high in the presence of cholesterol.  相似文献   

17.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca(2+) permeable ion channel using Ca(2+) indicators like fluo-3. These Single Channel Ca(2+) Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca(2+) sparks and Ca(2+) puffs caused by Ca(2+) release from intracellular stores (due to the opening of ryanodine receptors and IP(3) receptors, respectively). In contrast to intracellular Ca(2+) release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca(2+) handling in the vicinity of a channel with a known Ca(2+) influx, to obtain the Ca(2+) current passing through plasma membrane cation channels in near physiological solutions, to localize Ca(2+) permeable ion channels on the plasma membrane, and to estimate the Ca(2+) currents underlying those elementary events where the Ca(2+) currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca(2+) channels, and stretch-activated channels. For the L-type Ca(2+) channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca(2+) currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

18.
Chen DH  Wang M  Wang HG  Zhang W 《Protoplasma》2012,249(3):699-708
The fine regulation of stomatal aperture is important for both plant photosynthesis and transpiration, while stomatal closing is an essential plant response to biotic and abiotic stresses such as drought, salinity, wounding, and pathogens. Quick stomatal closing is primarily due to rapid solute loss. Cytosolic free calcium ([Ca(2+)](cyt)) is a ubiquitous second messenger, and its elevation or oscillation plays important roles in stomatal movements, which can be triggered by the opening of Ca(2+)-permeable channels on the plasma membrane. For Ca(2+)-permeable channel recordings, Ba(2+) is preferred as a charge-carrying ion because it has higher permeability to Ca(2+) channels and blocks K(+) channel activities to facilitate current recordings; however, it prevents visualization of Ca(2+) channels' K(+) permeability. Here, we employed Ca(2+) instead of Ba(2+) in recording Ca(2+)-permeable channels on Vicia faba guard cell plasma membrane to mimic physiological solute conditions inside guard cells more accurately. Inward Ca(2+) currents could be recorded at the single-channel level, and these currents could be inhibited by micromolar Gd(3+), but their reversal potential is far away from the theoretical equilibrium potential for Ca(2+). Further experiments showed that the discrepancy of the reversal potential of the recorded Ca(2+) currents is influenced by cytosolic K(+). This suggests that voltage-dependent Ca(2+) channels also mediate K(+) efflux at depolarization voltages. In addition, a new kind of high-conductance channels with fivefold to normal Ca(2+) channel and 18-fold to normal outward K(+) conductance was found. Our data presented here suggest that plants have their own saving strategies in their rapid response to stress stimuli, and multiple kinds of hyperpolarization-activated Ca(2+)-permeable channels coexist on plasma membranes.  相似文献   

19.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

20.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号