首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organophosphorus (OP) esters are known to bind covalently to the active site serine of enzymes in the serine hydrolase family. It was a surprise to find that proteins with no active site serine are also covalently modified by OP. The binding site in albumin, transferrin, and tubulin was identified as tyrosine. The goal of the present work was to determine whether binding to tyrosine is a general phenomenon. Fourteen proteins were treated with a biotin-tagged organophosphorus agent called FP-biotin. The proteins were digested with trypsin and the labeled peptides enriched by binding to monomeric avidin. Peptides were purified by HPLC and fragmented by collision induced dissociation in a tandem ion trap mass spectrometer. Eight proteins were labeled and six were not. Tyrosine was labeled in human alpha-2-glycoprotein 1 zinc-binding protein (Tyr 138, Tyr 174 and Tyr 181), human kinesin 3C motor domain (Tyr 145), human keratin 1 (Tyr 230), bovine actin (Tyr 55 and Tyr 200), murine ATP synthase beta (Tyr 431), murine adenine nucleotide translocase 1 (Tyr 81), bovine chymotrypsinogen (Tyr 201) and porcine pepsin (Tyr 310). Only 1–3 tyrosines per protein were modified, suggesting that the reactive tyrosine was activated by nearby residues that facilitated ionization of the hydroxyl group of tyrosine. These results suggest that OP binding to tyrosine is a general phenomenon. It is concluded that organophosphorus-reactive proteins include not only enzymes in the serine hydrolase family, but also proteins that have no active site serine. The recognition of a new OP-binding motif to tyrosine suggests new directions to search for mechanisms of long-term effects of OP exposure. Another application is in the search for biomarkers of organophosphorus agent exposure. Previous searches have been limited to serine hydrolases. Now proteins such as albumin and keratin can be considered.  相似文献   

2.
Organophosphate (OP) esters bind covalently to the active site serine of enzymes in the serine hydrolase family. Recently, mass spectrometry identified covalent binding of OPs to tyrosine in a wide variety of proteins when purified proteins were incubated with OPs. In the current work, manual inspection of tandem mass spectrometry (MS/MS) data led to the realization that lysines also make a covalent bond with OPs. OP-labeled lysine residues were found in seven proteins that had been treated with either chlorpyrifos oxon (CPO) or diisopropylfluorophosphate (DFP): human serum albumin (K212, K414, K199, and K351), human keratin 1 (K211 and K355), human keratin 10 (K163), bovine tubulin alpha (K60, K336, K163, K394, and K401), bovine tubulin beta (K58), bovine actin (K113, K291, K326, K315, and K328), and mouse transferrin (K296 and K626). These results suggest that OP binding to lysine is a general phenomenon. Characteristic fragments specific for CPO-labeled lysine appeared at 237.1, 220.0, 192.0, 163.9, 128.9, and 83.9 amu. Characteristic fragments specific for DFP-labeled lysine appeared at 164.0, 181.2, and 83.8 amu. This new OP-binding motif to lysine suggests new directions to search for mechanisms of long-term effects of OP exposure and in the search for biomarkers of OP exposure.  相似文献   

3.
Abstract

Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

4.
Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

5.
Aporrectodea caliginosa is the most common endogeic (topsoil) earthworm in New Zealand and, because of its habitat, is potentially vulnerable to surface-applied pesticides. Lysosomal damage to earthworms, which can be visualized by the use of the neutral red retention assay (NRRA) has been evaluated in this species as a biomarker of organophosphate exposure. Earthworms were exposed in the laboratory to sub-lethal concentrations of chlorpyrifos and diazinon. In a semi-field experiment, earthworms were placed in mesocosms in a field sprayed with these pesticides at the rate recommended for a vegetable crop. In the laboratory, the neutral red retention time (NRRT) was significantly reduced following exposure to both pesticides compared with controls. In the semi-field experiment, earthworm NRRT was significantly reduced by both pesticides. These experiments have shown that the NRRA is very sensitive to exposure to chlorpyrifos and diazinon even at field rates. It therefore shows promise as a potential biomarker of contamination of soil by organophosphates.  相似文献   

6.
Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.  相似文献   

7.
Aporrectodea caliginosa is the most common endogeic (topsoil) earthworm in New Zealand and, because of its habitat, is potentially vulnerable to surface-applied pesticides. Lysosomal damage to earthworms, which can be visualized by the use of the neutral red retention assay (NRRA) has been evaluated in this species as a biomarker of organophosphate exposure. Earthworms were exposed in the laboratory to sub-lethal concentrations of chlorpyrifos and diazinon. In a semi-field experiment, earthworms were placed in mesocosms in a field sprayed with these pesticides at the rate recommended for a vegetable crop. In the laboratory, the neutral red retention time (NRRT) was significantly reduced following exposure to both pesticides compared with controls. In the semi-field experiment, earthworm NRRT was significantly reduced by both pesticides. These experiments have shown that the NRRA is very sensitive to exposure to chlorpyrifos and diazinon even at field rates. It therefore shows promise as a potential biomarker of contamination of soil by organophosphates.  相似文献   

8.
Butyrylcholinesterase-encapsulating bioadhesive liposomes are investigated as prophylactic scavengers of organophosphates for local administration to skin, eyes, airways, and lungs-gates through which organophosphates penetrate living systems. The systems were optimized with respect to: encapsulation efficiency; type of bioadhesive ligand bound to liposomes (collagen or hyaluronan); ligand density at the liposomal surface; retention of encapsulated-enzyme activity; protection of encapsulated enzyme from proteolysis; and scavenging the model organophosphate Demeton-S (DS). Monolayers of PC-12 cells were selected for feasibility testing based on: high affinity binding of the bioadhesive liposomes-DeltaG0 release upon binding ranged from -9 to -12 kcal/mol ligand; ability to mimic an organophosphate attack upon intact cells and measuring its impact on intracellular acetylcholinesterase. Under attack, unprotected cells lost 80-90% of intracellular enzyme activity. The loss was reduced to 20-30% for protected cells (pre-treated with the formulations), at the expense of liposomal Butyrylcholinesterase. These results support our prophylactic approach.  相似文献   

9.
A total of 118 workers from a 120-person grape picking crew became ill in early September 1976. Of these (108 men and 10 women), 85 received medical attention and three of the 85 were admitted to hospital. The symptoms were typical for organophosphate poisoning. Average plasma and red cell cholinesterase values for the affected workers were depressed more than 60 percent. Most were treated with atropine and some were also treated with 2-PAM (pralidoxime). The exposure to residues of the organophosphate pesticides dialifor (Torak®) and phosalone (Zolone®) occurred in one grower''s vineyards near Madera, California.It appeared that workers had been allowed into recently-treated areas before the expiration of the required 30-day safety interval for dialifor, and that excessive skin exposure to residues of this pesticide had resulted. The clinical management of these cases and the occupational surveillance of the workplace became quite complex.The grower sustained significant losses of grapes during the period in which some of his vineyards were under quarantine and he had to pay substantial medical expenses as well as a fine for violating state regulations concerning the proper use of pesticides.Organophosphate pesticides decay more slowly under hot, dry weather conditions than they do when rainfall is frequent. California has imposed a number of specific safety intervals to be observed after the application of these pesticides to certain crops. If, in violation of these regulations, workers are permitted to enter fields too soon, poisoning can occur.  相似文献   

10.
The ability of aromatic tryptophyl and tyrosyl side-chain donors to form charge-transfer (CT) complexes with the acceptor 1-methyl-3-carbamidopyridinium chloride has been used to investigate the degree of exposure of these aromatic residues in denaturated proteins. The coplanar geometry of the CT complexes requires that virtually a full ring face of the donor be available for interaction with the acceptor, and the aromatic donor residues of lysozyme, trypsin, chymotrypsin, and the zymogens of the latter two enzymes do not appear to be wholly "exposed" in 6 M guanidine hydrochloride. Comparison of the CT proerties of the proteins with the corresponding properties of model complexes suggests that the incomplete exposure is due at least in part to statistical fluctuations in the continuously mobile, randomly coiled polypeptide chain which result in residues being alternately fully exposed and partly covered. Reduction and alkylation of the disulfide cross-links increase the apparent availability of the aromatic residues but the exposure is still less than that expected from a comparable mixture of tryptophan and tyrosine residues. Previous studies on the exposure of the aromatic residues of lysozyme and trypsin in aqueous salt solutions, when taken together with the present results, further suggest that there are two distinct kinds of surface environment possible on native proteins in solution. Some residues appear to be located in areas of the protein surface which are characterized by relatively fixed or stable local conformations, and have apparent CT association constants closely resembling these of comparable model complexes. Other residues may be located in a region where the protein conformation is flexible or continuously mobile, as evidenced by their smaller apparent association constants. It is probably significant that Trp-62 of lysozyme and Trp-215 of trypsin, both specificity site residues, appear to belong to the class of residues which can be considered as being in a flexible environment on the protein surface.  相似文献   

11.
A mass spectrometry-based method was developed for selective detection of FP-biotinylated peptides in complex mixtures. Mixtures of peptides, at the low-picomole level, were analyzed by liquid chromatography and positive ion, nanospray, triple quadrupole, linear ion trap mass spectrometry. Peptides were fragmented by collision-activated dissociation in the mass spectrometer. The free FP-biotin and peptides containing FP-biotinylated serine or FP-biotinylated tyrosine yielded characteristic fragment ions at 227, 312, and 329 m/z. FP-biotinylated serine yielded an additional characteristic fragment ion at 591 m/z. Chromatographic peaks containing FP-biotinylated peptides were indicated by these diagnostic ions. Data illustrating the selectivity of the approach are presented for tryptic digests of FP-biotinylated trypsin and FP-biotinylated serum albumin. A 16-residue peptide from bovine trypsin was biotinylated on the active site serine. A 3-residue peptide from bovine albumin, YTR, was biotinylated on Tyr410. This latter result confirms that the organophosphorus binding site of albumin is a tyrosine. This method can be used to search for new biomarkers of organophosphorus agent exposure.  相似文献   

12.
Abstract Human immunoglobulin G Fc fragment-binding activity of Mycoplasma salivarium cells was remarkably enhanced by trypsin treatment of the cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of proteins of the cells treated wtrypsin was the same as that of the cells treated with pronase, although pronase treatment had been shown to reduce the activity in our previous study (FEMS Microbiol. Lett. 123, 305–310, 1994). This contradiction was clarified by the finding that trypsin bound the Fc fragment more strongly than the cells, and a small amount of trypsin remained in the cells treated with trypsin and washed well. On the basis of these results, it was concluded that the enhancement of cell activity by trypsin treatment was ascribed to binding of the Fc fragment to trypsin remaining in the trypsin-treated cells.  相似文献   

13.
Because interactions between cisplatin and plasma proteins contribute to drug efficacy and side effects, it is important to understand both the binding sites of cisplatin on the proteins and the formation of protein–cisplatin adducts. Previous results suggest that cisplatin preferentially binds to residues on the protein surface. The present work employed electrospray ionization mass spectrometry (MS) to identify such sites on both native and denatured ubiquitin (Ub). Fourier transform (FT) MS and tandem MS (MS/MS and MS3) enable analysis of Ub–cisplatin adduct digests to locate specific cisplatin binding sites. Results indicate that there are three such binding sites, i.e., M1, T12 and T14, and D32, on native Ub. The intensity of the relevant peaks in the FT-MS spectrum of the native Ub adduct digest demonstrates that residues T12 and T14 comprise the primary cisplatin binding site under the native conditions rather than residue M1 as reported in previous research studies. It is found in the present work, however, that M1 is the primary binding site on denatured Ub. Comparison of cisplatin binding sites on native and denatured Ub in this research demonstrates that the conformation of a protein significantly influences the preference of cisplatin for specific binding sites.  相似文献   

14.
Dialkylphosphates (DAP) are urinary markers of the exposure to organophosphates pesticides. The aim of this study was to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantitative determination of the following DAP: dimethylphosphate (DMP), dimethythiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP) and diethyldithiophosphate (DEDTP). Dibutylphosphate (DBP) was used as internal standard. This method was based on a liquid-liquid extraction procedure, a chromatographic separation using an Inertsil ODS3 C18 column and mass spectrometric detection in the negative ion, multiple reaction monitoring (MRM) mode, following two ion transitions per compound. It yielded a limit of quantification of 2 microg/L for the six compounds and intra-assay coefficients of variation (CV%) lower than 20%. This method was applied to the analysis of urines samples from a small cohort of non-exposed volunteers. At least one of the six DAP was detected in each sample. This result confirmed the feasibility of a LC-MS/MS procedure for monitoring the general population exposure to some frequently employed organophosphate pesticides.  相似文献   

15.
Boswell S  Mathew J  Beach M  Osuna R  Colón W 《Biochemistry》2004,43(10):2964-2977
The diverse roles of tyrosine residues in proteins may be attributed to their dual hydrophobic and polar nature, which can result in hydrophobic and ring stacking interactions, as well as hydrogen bonding. The small homodimeric DNA binding protein, factor for inversion stimulation (FIS), contains four tyrosine residues located at positions 38, 51, 69, and 95, each involved in specific intra- or intermolecular interactions. To investigate their contributions to the stability, flexibility, and spectroscopic properties of FIS, each one was independently mutated to phenylalanine. Equilibrium denaturation experiments show that Tyr95 and Tyr51 stabilize FIS by about 2 and 1 kcal/mol, respectively, as a result of their involvement in a hydrogen bond-salt bridge network. In contrast, Tyr38 destabilizes FIS by about 1 kcal/mol due to the placement of a hydroxyl group in a hydrophobic environment. The stability of FIS was not altered when the solvent-exposed Tyr69 was mutated. Limited proteolysis with trypsin and V8 proteases was used to monitor the flexibility of the C-terminus (residues 71-98) and the dimer core (residues 26-70), respectively. The results for Y95F and Y51F FIS revealed a different proteolytic susceptibility of the dimer core compared to the C-terminus, suggesting an increased flexibility of the latter. DNA binding affinity of the various FIS mutants was only modestly affected and correlated inversely with the C-terminal flexibility probed by trypsin proteolysis. Deconvolution of the fluorescence contribution of each mutant revealed that it varies in intensity and direction for each tyrosine in WT FIS, highlighting the role of specific interactions and the local environment in determining the fluorescence of tyrosine residues. The significant changes in stability, flexibility, and signals observed for the Y51F and Y95F mutations are attributed to their coupled participation in the hydrogen bond-salt bridge network. These results highlight the importance of tyrosine hydrogen-bonding and packing interactions for the stability of FIS and demonstrate the varying roles that tyrosine residues can play on the structural and spectroscopic properties of even small proteins.  相似文献   

16.
The selectivity of immobilized metal affinity chromatography (IMAC) systems for the purification of phosphopeptides is poor. This is particularly a problem with tryptic digests of proteins where a large number of acidic peptides are produced that also bind during IMAC. The hypothesis examined in this work was that the selectivity of IMAC columns for phosphopeptides could be increased by using endoproteinase glu-C (glu-C) for protein digestion. Glu-C cleaves proteins at acidic residues and should reduce the number of acidic residues in peptides. This method was successfully applied to a mixture of model proteins and bovine milk. The percentage of phosphorylated peptides selected from proteolytic digests of the milk sample was increased from 40% with trypsin to 70% with glu-C. Additionally, this method was coupled with stable isotope coding methods to quantitatively compare the concentration of phosphoproteins between samples.  相似文献   

17.
Electrospray ionization mass spectrometry (ESI-LC/MS) of tryptic digests of human alphaB-crystallin in the presence and absence of ATP identified four residues located within the core "alpha-crystallin" domain, Lys(82), Lys(103), Arg(116), and Arg(123), that were shielded from the action of trypsin in the presence of ATP. In control experiments, chymotrypsin was used in place of trypsin. The chymotryptic fragments of human alphaB-crystallin produced in the presence and absence of ATP were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven chymotryptic cleavage sites, Trp(60), Phe(61), Phe(75), Phe(84), Phe(113), Phe(118), and Tyr(122), located near or within the core alpha-crystallin domain, were shielded from the action of chymotrypsin in the presence of ATP. Chemically similar analogs of ATP were less protective than ATP against proteolysis by trypsin or chymotrypsin. ATP had no effect on the enzymatic activity of trypsin and the K(m) for trypsin was 0.031 mM in the presence of ATP and 0.029 mM in the absence of ATP. The results demonstrated an ATP-dependent structural modification in the core alpha-crystallin domain conserved in nearly all identified small heat-shock proteins that act as molecular chaperones.  相似文献   

18.
Aims: The bacterial organophosphorus hydrolase (OPH) enzyme hydrolyses and detoxifies a broad range of toxic organophosphate pesticides and warfare nerve agents by cleaving the various phosphorus‐ester bonds (P–O, P–F, P–CN, P–S); however, OPH hydrolyses these bonds with varying efficiencies. The aim of this study was to generate a variant OPH enzyme with improved hydrolytic efficiency against the poorly hydrolysed P–S class of organophosphates. Methods and Results: The gene encoding OPH was sequentially mutated at specific codons by saturation mutagenesis and screened for improved activity against the P–S substrates demeton‐S methyl and malathion. Escherichia coli lysates harbouring the variants displayed up to 177‐ and 1800‐fold improvement in specific activity against demeton‐S methyl and malathion, respectively, compared to the wild‐type lysates. The specificity constants of the purified variant proteins were improved up to 25‐fold for demeton‐S methyl and malathion compared to the wild‐type. Activity was associated with organophosphate detoxification as the hydrolysed substrate lost the ability to inhibit acetylcholinesterase. The improved hydrolytic efficiency against demeton‐S translated to the improved ability to hydrolyse the warfare agent VX. Conclusions: OPH variant enzymes were generated that displayed significantly improved ability to hydrolyse and detoxify organophosphates harbouring the P–S bond. Significance and Impact of the Study: The long‐term goal is to generate an environmentally‐friendly enzyme‐mediated bioremediation approach for the removal of toxic organophosphate compounds in the environment.  相似文献   

19.
The keratin proteins from wool can be divided into two classes: the intermediate filament proteins (IFPs) and the matrix proteins. Using peptide mass spectral fingerprinting it was possible to match spots to the known theoretical sequences of some IFPs in web-based databases, as enzyme digestion generated sufficient numbers of peptides from each spot to achieve this. In contrast, it was more difficult to obtain good matches for some of the lower molecular weight matrix proteins. Relatively few peaks were generated from tryptic digests of high-sulfur proteins because of their lower molecular weight and the absence of basic residues in the first two-thirds of the sequence. Their high sequence homology also means that generally only a few of these peptides could be considered to be unique identifiers for each protein. Nevertheless, it was still possible to uniquely identify some of these proteins, while the presence of two peptides in the matrix-assisted laser desorption/ionization time-of-flight mass spectrum allowed classification of other protein spots as being members of this family. Only one major peptide peak was generated by the high-glycine tyrosine proteins (HGTPs) and there were relatively few sequences available in web-based databases, limiting their identification to one HGTP family.  相似文献   

20.
L-Tyrosine and L-tyrosine residues in proteins are attacked by various reactive-nitrogen species (RNS) including peroxynitrite to form 3-nitrotyrosine (NO(2)Tyr) and protein-associated 3-nitrotyrosine (NO(2)TyrProt). Circulating NO(2)Tyr and NO(2)TyrProt have been suggested and are widely used as biomarkers of oxidative stress in humans. In this article the mass spectrometry (MS)-based analytical methods recently reported for the quantification of circulating levels of NO(2)Tyr and NO(2)TyrProt are discussed. These methodologies differ in sensitivity, selectivity, specificity and accessibility to interferences with the latter mainly arising from artifactual formation of NO(2)Tyr and NO(2)TyrProt during sample treatment such as acidification and chemical derivatization. Application of these methodologies to healthy normal humans revealed basal circulating levels for NO(2)Tyr which range between 0.7 and 64 nM, i.e. by two orders of magnitude. Application of gas chromatography-tandem mass spectrometry (GC-tandem MS) methods by two independent research groups by using two different protocols to avoid artifactual nitration of L-tyrosine revealed almost identical mean plasma levels of the order of 1.0 nM in healthy humans. The lower limits of quantitation (LOQ) of these methods were 0.125 and 0.3n M, respectively. This order of magnitude for basal NO(2)Tyr is supported by two liquid chromatography-tandem mass spectrometry (LC-tandem MS) methods with LOQ values of 4.4 and 1.4 nM. On the basis of the data provided by GC-tandem MS and LC-tandem MS the use of a range of 0.5-3 nM for NO(2)Tyr and of 0.6 pmol/mg plasma protein or a molar ratio of 3-nitrotyrosine to tyrosine in plasma proteins of the order of 1:10(6) for NO(2)TyrProt in plasma of healthy humans as reference values appear reasonably justified. Recently reported clinical studies involving 3-nitrotyrosine as a biomarker of oxidative stress are discussed in particular from the analytical point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号