首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.  相似文献   

2.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

3.
A major obstacle to the therapeutic use of anthracyclines, highly effective anticancer agents, is the fact that their administration results in dose-dependent cardiomyopathy. According to the currently accepted hypothesis, anthracyclines injure the heart by generating oxygen free radicals. The ability of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) -- new iron chelators -- to protect against peroxidation as well as their suitable biological, physical and chemical properties make the compounds promising candidates for pre-clinical and clinical studies. Activities of carbonyl reductase CR (1.1.1.184), dihydrodiol dehydrogenase DD2 (1.3.1.20), aldehyde reductase ALR1 (1.1.1.2) and P450 isoenzymes (CYP1A1, CYP1A2, CYP2B, CYP3A) involved in the metabolism of daunorubicin, doxorubicin and other drugs or xenobiotics were studied. Various concentrations of the chelators were used either alone or together with daunorubicin or doxorubicin for in vitro studies in isolated hepatocytes. A significant decrease of activity was observed for all enzymes only at PIH and SIH concentrations higher than those presumed to be used for therapy. The results show that PIH and SIH have no effect on the activities of the enzymes studied in vitro and allow us to believe that they will not interfere with the metabolism of co-administered drugs and other xenobiotics. Daunorubicin (Da) and doxorubicin (Dx) significantly reduce cytochrome P450 activity, but the addition of SIH and PIH chelators (50 microM) reverses the reduction and restores the activity to 70-90 % of the activity of relevant controls.  相似文献   

4.
Elevated catecholamine levels are known to induce damage of the cardiac tissue. This catecholamine cardiotoxicity may stem from their ability to undergo oxidative conversion to aminochromes and concomitant production of reactive oxygen species (ROS), which damage cardiomyocytes via the iron-catalyzed Fenton-type reaction. This suggests the possibility of cardioprotection by iron chelation. Our in vitro experiments have demonstrated a spontaneous decrease in the concentration of the catecholamines epinephrine and isoprenaline during their 24-h preincubation in buffered solution as well as their gradual conversion to oxidation products. These changes were significantly augmented by addition of iron ions and reduced by the iron-chelating agent salicylaldehyde isonicotinoyl hydrazone (SIH). Oxidized catecholamines were shown to form complexes with iron that had significant redox activity, which could be suppressed by SIH. Experiments using the H9c2 cardiomyoblast cell line revealed higher cytotoxicity of oxidized catecholamines than of the parent compounds, apparently through the induction of caspase-independent cell death, whereas co-incubation of cells with SIH was able to significantly preserve cell viability. A significant increase in intracellular ROS formation was observed after the incubation of cells with catecholamine oxidation products; this could be significantly reduced by SIH. In contrast, parent catecholamines did not increase, but rather decreased, cellular ROS production. Hence, our results demonstrate an important role for redox-active iron in catecholamine autoxidation and subsequent toxicity. The iron chelator SIH has shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.  相似文献   

5.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as beta-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against *OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for *OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of *OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on *OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

6.
2-Pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) and di-2-pyridylketone isonicotinoyl hydrazone (HPKIH) are two Fe chelators with contrasting biological behavior. HPCIH is a well-tolerated Fe chelator with limited antiproliferative activity that has potential applications in the treatment of Fe-overload disease. In contrast, the structurally related HPKIH ligand possesses significant antiproliferative activity against cancer cells. The current work has focused on understanding the mechanisms of the Fe mobilization and antiproliferative activity of these hydrazone chelators by synthesizing new analogs (based on 2-acetylpyridine and 2-benzoylpyridine) that resemble both series and examining their Fe coordination and redox chemistry. The Fe mobilization activity of these compounds is strongly dependent on the hydrophobicity and solution isomeric form of the hydrazone (E or Z). Also, the antiproliferative activity of the hydrazone ligands was shown to be influenced by the redox properties of the Fe complexes. This indicated that toxic Fenton-derived free radicals are important for the antiproliferative activity for some hydrazone chelators. In fact, we show that any substitution of the H atom present at the imine C atom of the parent HPCIH analogs leads to an increase in antiproliferative efficacy owing to an increase in redox activity. These substituents may deactivate the imine R–C=N–Fe (R is Me, Ph, pyridyl) bond relative to when a H atom is present at this position preventing nucleophilic attack of hydroxide anion, leading to a reversible redox couple. This investigation describes novel structure–activity relationships of aroylhydrazone chelators that will be useful in designing new ligands or fine-tuning the activity of others. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Tryptophan hydroxylase requires Fe2+ for in vitro enzyme activity. In this study, the intracellular activity of tryptophan hydroxylase was assessed by applying 3-hydroxybenzylhydrazine (NSD-1015), an inhibitor of aromatic l-amino acid decarboxylase, to monolayer cultures of RBL2H3 cells, a serotonin producing mast cell line. The effect of manipulating intracellular 'free' iron levels on enzyme activity was analyzed by administration of iron chelators. Desferrioxamine (DFO) suppressed the intracellular enzyme activity. Salicylaldehyde isonicotinoyl hydrazone (SIH) also suppressed enzyme activity, but stimulated it when administered in the Fe-bound form. Hemin also stimulated enzyme activity, which progressively increased over several hours to more than sixfold the initial level. DFO and SIH inhibited the hemin stimulatory effect when administered simultaneously with hemin. Both suppression and stimulation with these chelators took place without a significant decrease or increase in the amount of enzyme. These results indicate that there was an inadequate supply of Fe2+ in the cells to support full activity of tryptophan hydroxylase.  相似文献   

8.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

9.
The aim of this study was to analyze the ECG time intervals in the course of the development of chronic anthracycline cardiomyopathy in rabbits. Furthermore, this approach was employed to study the effects of a model cardioprotective drug (dexrazoxane) and two novel iron chelating compounds--salicylaldehyde isonicotinoyl hydrazone (SIH) and pyridoxal 2-chlorobenzoyl hydrazone (o-108). Repeated daunorubicin administration induced a significant and progressive prolongation of the QRS complex commencing with the eighth week of administration. At the end of the study, we identified a significant correlation between QRS duration and the contractility index dP/dt(max) (r = -0.81; P<0.001) as well as with the plasma concentrations of cardiac troponin T (r = 0.78; P<0.001). In contrast, no alterations in ECG time intervals were revealed in the groups co-treated with either dexrazoxane or both novel cardioprotective drugs (SIH, o-108). Hence, in this study, the QRS duration is for the first time shown as a parameter suitable for the non-invasive evaluation of the anthracycline cardiotoxicity and cardioprotective effects of both well established and investigated drugs. Moreover, our results strongly suggest that novel iron chelators (SIH and o-108) merit further study as promising cardioprotective drugs against anthracycline cardiotoxicity.  相似文献   

10.
We have previously described 2-aryl-thiazolidine-4-carboxylic acid amides as a novel class of antiproliferative agents for prostate cancer. Screening these compounds with melanoma cell lines revealed that several of them have potent antiproliferative activity and selectivity against melanoma. To further improve the potency and selectivity, we synthesized a new series of analogs and tested them in two melanoma cell lines and fibroblast cells (negative controls). Comparison of anticancer effects of these compounds with a standard chemotherapeutic agent, sorafenib, showed that they are very effective in killing melanoma cells with low micromolar to nanomolar antiproliferative activity and provide us a new lead for developing potential drugs for melanoma.  相似文献   

11.
Pyridoxal isonicotinoyl hydrazone (PIH) analogues are effective iron chelators in vivo and in vitro, and may be of value for the treatment of secondary iron overload. The sensitivity of Jurkat cells to Fe-chelator complexes was enhanced several-fold by the depletion of the antioxidant glutathione, indicating the role of oxidative stress in their toxicity. K562 cells loaded with eicosapentaenoic acid, a fatty acid particularly susceptible to oxidation, were also more sensitive to the toxic effects of the Fe complexes, and toxicity was proportional to lipid peroxidation. Thus Fe-chelator complexes cause oxidative stress, which may be a major component of their toxicity. As was the case for their Fe complexes, the toxicity of PIH analogues was enhanced by glutathione depletion of Jurkat cells and eicosapentaenoic acid-loading of K562 cells. Thus the toxicity of the chelators themselves is also enhanced by compromised cellular redox status. In addition, the toxicity of the chelators was diminished by culturing Jurkat cells under hypoxic conditions, which may limit the production of the reactive oxygen species that initiate oxidative stress. A significant part of the toxicity of the chelators may be due to intracellular formation of Fe-chelator complexes, which oxidatively destroy the cell.  相似文献   

12.
Oxidative stress is a common denominator of numerous cardiovascular disorders. Free cellular iron catalyzes the formation of highly toxic hydroxyl radicals, and iron chelation may thus be an effective therapeutic approach. However, using classical iron chelators in diseases without iron overload poses risks that necessitate more advanced approaches, such as prochelators that are activated to chelate iron only under disease-specific oxidative stress conditions. In this study, three cell-membrane-permeable iron chelators (clinically used deferasirox and experimental SIH and HAPI) and five boronate-masked prochelator analogs were evaluated for their ability to protect cardiac cells against oxidative injury induced by hydrogen peroxide. Whereas the deferasirox-derived agents TIP and TRA-IMM displayed negligible protection and even considerable toxicity, the aroylhydrazone prochelators BHAPI and BSIH-PD provided significant cytoprotection and displayed lower toxicity after prolonged cellular exposure compared to their parent chelators HAPI and SIH, respectively. Overall, the most favorable properties in terms of protective efficiency and low inherent cytotoxicity were observed with the aroylhydrazone prochelator BSIH. BSIH efficiently protected both H9c2 rat cardiomyoblast-derived cells and isolated primary rat cardiomyocytes against hydrogen peroxide-induced mitochondrial and lysosomal dysregulation and cell death. At the same time, BSIH was nontoxic at concentrations up to its solubility limit (600 μM) and in 72-h incubation. Hence, BSIH merits further investigation for prevention and/or treatment of cardiovascular disorders associated with a known (or presumed) component of oxidative stress.  相似文献   

13.
14.
Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.  相似文献   

15.
The mechanism by which bipyridine and phenanthroline types of iron chelator inhibit iron uptake from transferrin and iron efflux mediated by pyridoxal isonicotinoyl hydrazone was investigated using rabbit reticulocytes with the aim of providing more information on the normal process of iron uptake by developing erythroid cells. It was shown that the chelators block cellular uptake by chelating the iron immediately after release from transferrin while it is still in the membrane fraction of the cells. The iron-chelator is then released from the cells by a process which is very similar to that of transferrin release with respect to kinetics and sensitivity to incubation temperature and the effects of metabolic inhibitors and other chemical reagents. These results are compatible with the conclusion that both transferrin and the iron-chelators in the cells are mainly present in endocytotic vesicles and are released from the cells by exocytosis. The chelators were also shown to block the pyridoxal isonicotinoyl hydrazone-mediated efflux of iron from cells which had taken up iron in the presence of isoniazid, an inhibitor of haem synthesis, by chelating the iron in the cytosol and the mitochondria. In this case, the iron-chelator complexes were not released from the cells. Measurement of the diethyl ether/water partition coefficients of bipyridine and 1,10-phenanthroline and their iron complexes gave much higher values for the free chelators, supporting the concept that the chelators trap the iron intracellularly because of differences in the lipid solubility and, hence, membrane permeability to the free chelators and their iron complexes.  相似文献   

16.
One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.  相似文献   

17.
The orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH), and five analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxal p-methoxybenzoyl hydrazone ((PpMBH), pyridoxal m-fluorobenzoyl hydrazone (PmFBH), 3-hydroxy- isonicotinaldehyde isonicotinoyl hydrazone (IIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) were synthesised and characterised and their acid dissociation constants measured by glass electrode potentiometry and UV—Vis spectrophotometry. Analysis of the data showed that at physiological pH all of the ligands are predominantly (av. 80%) in the form of the neutral molecule, allowing passage through cell membranes and access to intracellular iron pools. The results are discussed in the context of the development of an orally effective iron chelator for clinical use.  相似文献   

18.
New hydrazone ligands (HL) derived from 5-substituted isatins and 1-(4-(2-methoxybenzyl)-6-arylpyridazin-3-yl)hydrazines and its complexes with Co(II) and Cu(II) were synthesized. The new hydrazones and their complexes were characterized by means of elemental, spectral analyses and magnetic studies. Primary cytotoxicity evaluation of HL 5a and the new complexes showed that these complexes could act as anticancer agents since they reduced the growth of samples of human tumour cell lines (HCT116((Colon)), MCF7((Breast)) and HELA((Cervix))) to ≤18.5 μg/mL for the new complexes.  相似文献   

19.
Cell cycle progression is dependent on the intracellular iron level, and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing alkyl acid and alkyl ester groups at the lower rim, designed as potential iron chelators. We report their effect on cell proliferation, in comparison with the new oral chelator ICL670 (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid). The antiproliferative effect of these new compounds was studied in human hepatocarcinoma HepaRG cell cultures using the MTT assay. Their cytotoxicity was evaluated by extracellular LDH activity. Preliminary results indicate that their antiproliferative effect is due to their cytotoxicity. The efficiency of these compounds, comparable to that of ICL670, was independent of iron depletion. This effect remains to be further explored. Moreover, it also shows that novel substituted calix[4]arenes could open the way to new valuable medicinal chemistry scaffolding.  相似文献   

20.
Two oral chelators, CP20 (deferiprone) and ICL670 (deferasirox), have been synthesized for the purpose of treating iron overload diseases, especially thalassemias. Given their antiproliferative effects resulting from the essential role played by iron in cell processes, such compounds might also be useful as anticancer agents. In the present study, we tested the impact of these two iron chelators on iron metabolism, in the HepaRG cell line which allowed us to study proliferating and differentiated hepatocytes. ICL670 uptake was greater than the CP20 uptake. The iron depletion induced by ICL670 in differentiated cells increased soluble transferrin receptor expression, decreased intracellular ferritin expression, inhibited 55Fe (III) uptake, and reduced the hepatocyte concentration of the labile iron pool. In contrast, CP20 induced an unexpected slight increase in intracellular ferritin, which was amplified by iron-treated chelator exposure. CP20 also promoted Fe(III) uptake in differentiated HepaRG cells, thus leading to an increase of both the labile pool and storage forms of iron evaluated by calcein fluorescence and Perls staining, respectively. In acellular conditions, compared to CP20, iron removing ability from the calcein-Fe(III) complex was 40 times higher for ICL670. On the whole, biological responses of HepaRG cells to ICL670 treatment were characteristic of expected iron depletion. In contrast, the effects of CP20 suggest the potential involvement of this compound in the iron uptake from the external medium into the hepatocytes from the HepaRG cell line, therefore acting like a siderophore in this cell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号