首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The epigenetic control of antigenic variation in Plasmodium falciparum   总被引:7,自引:0,他引:7  
Much of what is known about antigenic variation in the human malaria parasite Plasmodium falciparum has been established by the study of phenotypic changes at the surface of parasitized red blood cells. Although this has contributed to our fundamental understanding of immune escape, nothing conclusive has been elucidated about the molecular mechanisms that determine activation and silencing of members of the antigenic variation var gene family. Recent findings indicate that reversible chromatin modifications and perinuclear gene movement are epigenetic factors that define the silent and active states of telomere-adjacent var genes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Four large multigene families have been described in Plasmodium falciparum malaria parasites (var, rif, stevor and Pf60). var and rif genes code for erythrocyte surface proteins and undergo clonal antigenic variation. We report here the characterization of the first Pf60 gene. The 6.1 gene is constitutively expressed by all mature blood stages and codes for a protein located within the nucleus. It has a single copy, 7-exon, 5' domain, separated by an internal stop codon from a 3' domain that presents a high homology with var exon II. Double-site immunoassay and P. falciparum transient transfection using the reporter luciferase gene demonstrated translation through the internal ochre codon. The 6.1 N-terminal domain has no homology with any protein described to date. Sequence analysis identified a leucine zipper and a putative nuclear localization signal and showed a high probability for coiled coils. Evidence for N-terminal coiled coil-mediated protein interactions was obtained. This identifies the 6.1 protein as a novel nuclear protein. These data show that the Pf60 and var genes form a superfamily with a common 3' domain, possibly involved in regulating homo- or heteromeric interactions.  相似文献   

18.
19.
Cell metabolism and function are modulated in part by cell and nuclear shape. Nuclear shape is controlled by the nuclear matrix, the RNA-protein skeleton the nucleus, and its interactions with cytoskeletal systems such as intermediate filaments and actin microfilaments. The nuclear matrix plays an important role in cell function and gene expression because active genes are bound to the nuclear matrix whereas inactive genes are not. It is unknown, however, how genes move on and off the matrix, and whether these events require compositional protein changes, i.e., alterations in protein content of the nuclear matrix, or other, more subtle alterations and/or modificatins. The purpose of this investigation was to begin to determine how nuclear matrix protein composition is related to gene expression. We demonstrate that gene expression can change without apparent changes in the protein composition of the nuclear matrix in MCF10A breast epithelial cells.  相似文献   

20.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号