首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of a complete survey of the more than 2-million-member Pharmacopeia compound collection in a 1536-well microvolume screening assay format are reported. A complete technology platform, enabling the performance of ultra-high throughput screening in a miniaturized 1536-well assay format, has been assembled and utilized. The platform consists of tools for performing microvolume assays, including assay plates, liquid handlers, optical imagers, and data management software. A fluorogenic screening assay for inhibition of a protease enzyme target was designed and developed using this platform. The assay was used to perform a survey screen of the Pharmacopeia compound collection for active inhibitors of the target enzyme. The results from the survey demonstrate the successful implementation of the ultra-high throughout platform for routine screening purposes. Performance of the assay in the miniaturized format is equivalent to that of a standard 96-well assay, showing the same dependence on kinetic parameters and ability to measure enzyme inhibition. The survey screen identified an active class of compounds within the Pharmacopeia compound collection. These results were confirmed using a standard 96-well assay.  相似文献   

2.
We describe a high-throughput procedure for measuring beta-galactosidase activity in bacteria. This procedure is unique because all manipulations, including bacterial growth and cell permeabilization, are performed in a 96-well format. Cells are permeabilized by chloroform/SDS treatment directly in the 96-well blocks and then transferred to 96-well microplates for standard colorimetric assay of beta-galactosidase activity as described by Miller [J. H. Miller (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY]. Absorbance data are collected with a microplate reader and analyzed using a Microsoft Excel spreadsheet. The beta-galactosidase specific activity values obtained with the high-throughput procedure are identical to those obtained by the traditional single-tube method of Miller. Thus, values obtained with this procedure may be expressed as Miller units and compared directly to Miller units reported in the literature. The 96-well format for permeabilization and assay of enzyme specific activity together with the use of 12-channel and repeater pipettors enables efficient processing of hundreds of samples in an 8-h day.  相似文献   

3.
In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation.  相似文献   

4.
Cancer cell spheroids present a relevant in vitro model of avascular tumors for anti-cancer drug testing applications. A detailed protocol for producing both mono-culture and co-culture spheroids in a high throughput 96-well plate format is described in this work. This approach utilizes an aqueous two-phase system to confine cells into a drop of the denser aqueous phase immersed within the second aqueous phase. The drop rests on the well surface and keeps cells in close proximity to form a single spheroid. This technology has been adapted to a robotic liquid handler to produce size-controlled spheroids and expedite the process of spheroid production for compound screening applications. Spheroids treated with a clinically-used drug show reduced cell viability with increase in the drug dose. The use of a standard micro-well plate for spheroid generation makes it straightforward to analyze viability of cancer cells of drug-treated spheroids with a micro-plate reader. This technology is straightforward to implement both robotically and with other liquid handling tools such as manual pipettes.  相似文献   

5.
The colony formation assay (CFA) is the gold standard for measuring the effects of cytotoxic agents on cancer cells in vitro; however, in its traditional 6-well format, it is a time-consuming assay, particularly when evaluating combination therapies. In the interest of increased efficiency, the 6-well CFA was converted to a 96-well format using an automated colony counting algorithm. The 96-well CFA was validated using ionizing radiation therapy on the FaDu (human hypopharyngeal squamous cell) and A549 (human lung) cancer cell lines. Its ability to evaluate combination therapies was investigated by the generation of dose-response curves for the combination of cisplatin and radiation therapy on FaDu and A549 cells. The 96-well CFA was then transferred to a robotic platform for evaluating its potential as a high-throughput screening (HTS) readout. The LOPAC1280 library was screened against FaDu cells, and eight putative hits were identified. Using the 96-well CFA to validate the eight putative chemicals, six of the eight were confirmed, resulting in a positive hit rate of 75%. These data indicate that the 96-well CFA can be adopted as an efficient alternative assay to the 6-well CFA in evaluating single and combination therapies in vitro, providing a possible readout that could be used on a HTS platform.  相似文献   

6.
Summary Oxidant injury of the vascular endothelium is considered an early event in the pathogenesis of atherosclerosis. The model of oxidant injury is crucial to the investigation of antioxidants. In the present study, a convenient in vitro model of oxidant injury induced by hydrogen peroxide (H2O2) was developed using bovine pulmonary artery endothelial cells (PAEC). Viability of PAEC grown in 96-well culture plates was determined with methylthiazol tetrazolium (MTT) colorimetric assay. Cell membrane integrity was measured by lactate dehydrogenase (LDH) release from PAEC grown in 24-well plates. Malondialdehyde (MDA, a product of lipid peroxidation) in PAEC grown in 6-well plates was detected by a thiobarbituric acid fluorometric assay. Incubation of H2O2 with PAEC caused a dose-dependent decrease of cell viability, an increase of LDH release, and an elevation of MDA production. MTT assay was convenient, quantitative, non-radioactive, and suitable for testing a large number of samples. The fluorometric assay for measuring MDA production in endothelial cells used 6-well plates instead of 80-cm2 flasks employed by previous investigators. The use of multiwell culture plates in these assays made it possible for more samples to be tested in any single experiment. The three assays are reproducible with low intraplate and interplate coefficients of variation. This in vitro model is suitable for screening antioxidants and for studying pharmacodynamics at the cellular level.  相似文献   

7.
Cell-based beta-lactamase reporter gene assays designed to measure the functional responses of G-protein-coupled receptors (GPCRs) were miniaturized to less than 2 microL total assay volume in a 3456-well microplate. Studies were done to evaluate both receptor agonists and antagonists. The pharmacology of agonists and antagonists for target GPCRs originally developed in a 96-well format was recapitulated in a 3456-well microplate format without compromising data quality or EC(50)/IC(50) precision. These assays were employed in high-throughput screening campaigns, allowing the testing of more than 150,000 compounds in 8 h. The instrumentation used and practical aspects of the assay development are discussed.  相似文献   

8.
Napolitano AP  Dean DM  Man AJ  Youssef J  Ho DN  Rago AP  Lech MP  Morgan JR 《BioTechniques》2007,43(4):494, 496-494, 500
Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.  相似文献   

9.
High-throughput genomic approaches to gene function or target identification have led to the development and implementation of the 96-well format for many standard molecular biology manipulations. The apparatus described here, a Multichannel Plating Unit, is designed to plate out individual cultures efficientlyfrom standard 96-well culture blocks. Following transformation, aliquots of culture are loaded onto sterile beads that are rolled along individual channels of agar media. After the beads traverse the channel, they drop into the exit alley for disposal via an exit pore. The apparatus presented has 12 individual lanes, and the spacing is compatible with a standard 12-channel pipettor Thus, the unit allows for the rapid plating of 12 individual cultures at a time. For one 96-well block of transformants, this method reduces the labeling and plating effort from 96 culture dishes that are spread individually to eight multichannel plates. The savings in time, materials, and storage space is significant  相似文献   

10.
The aims of high-throughput (HTP) protein production systems are to obtain well-expressed and highly soluble proteins, which are preferred candidates for use in structure-function studies. Here, we describe the development of an efficient and inexpensive method for parallel cloning, induction, and cell lysis to produce multiple fusion proteins in Escherichia coli using a 96-well format. Molecular cloning procedures, used in this HTP system, require no restriction digestion of the PCR products. All target genes can be directionally cloned into eight different fusion protein expression vectors using two universal restriction sites and with high efficiency (>95%). To screen for well-expressed soluble fusion protein, total cell lysates of bacteria culture ( approximately 1.5 mL) were subjected to high-speed centrifugation in a 96-tube format and analyzed by multiwell denaturing SDS-PAGE. Our results thus far show that 80% of the genes screened show high levels of expression of soluble products in at least one of the eight fusion protein constructs. The method is well suited for automation and is applicable for the production of large numbers of proteins for genome-wide analysis.  相似文献   

11.
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate profile of oxygenases. The assay system is based on 4-aminoantipyrine (4-AAP), a colorimetric phenol detection reagent. By using 2 detection wavelengths (509 nm and 600 nm), the authors achieved a linear response from 50 to 800 microM phenol and standard deviations below 11% in 96-well plate assays. The monooxygenase P450 BM-3 and its F87A mutant were used as a model system for medium-throughput assay development, identification of novel substrates (e.g., phenoxytoluene, phenylallyether, and coumarone), and discovery of P450 BM-3 F87A mutants with 8-fold improvement in 3-phenoxytoluene hydroxylation activity. This activity increase was achieved by screening a saturation mutagenesis library of amino acid position Y51 using the 4-AAP protocol in the 96-well format.  相似文献   

12.
Cell-based assays are more complex than cell-free test systems but still reflect a highly artificial cellular environment. Incorporation of organotypic 3-dimensional (3-D) culture systems into mainstream drug development processes is increasingly discussed but severely limited by complex methodological requirements. The objective of this study was to explore a panel of standard assays to provide an easy-handling, standardized protocol for rapid routine analysis of cell survival in multicellular tumor spheroid-based antitumor drug testing. Spheroids of 2 colon carcinoma cell lines were characterized for evaluation. One of the assay systems tested could reliably be used to determine cell viability in spheroids. The authors verified that the acid phosphatase assay (APH) is applicable for single spheroids in 96-well plates, does not require spheroid dissociation, and is linear and highly sensitive for HT29 and HCT-116 spheroids up to diameters of 650 microm and 900 microm, consisting of 40,000 and 80,000 cells, respectively. Treatment of HT29 and HCT-116 cells with 5-fluorouracil, Irinotecan, and C-1311 revealed critically reduced drug efficacies in 3-D versus monolayer culture, which is discussed in light of literature data. The experimental protocol presented herein is a small but substantial contribution to the establishment of sophisticated 3-D in vitro systems in the antitumor drug screening scenario.  相似文献   

13.
In the degradation of chlorophyll, chlorophyllase catalyzes the initial hydrolysis of the phytol moiety from the pigment. Since chlorophyll degradation is a defining feature of plant senescence, compounds inhibiting chlorophyllase activity may delay senescence, thereby improving shelf life and appearance of plant products. Here we describe the development of a 96-well plate-based purification and assay system for measuring chlorophyllase activity. Integrated lysis and immobilized metal affinity chromatography plates were used for purifying recombinant hexahistidine-tagged Triticum aestivum (wheat) chlorophyllase from Escherichia coli. Chlorophyllase assays using chlorophyll as a substrate showed that the immobilized fusion protein displayed kinetic parameters similar to those of recombinant enzyme purified by affinity chromatography; however, the need to extract reaction products from a multiwell plate limits the value of this assay for high-throughput screening applications. Replacing chlorophyll with p-nitrophenyl-ester substrates eliminates the extraction step and allows for continuous measurement of chlorophyllase activity in a multiwell plate format. Determination of steady state kinetic constants, pH rate profile, the inhibitory effects of metal ions and esterase inhibitors, and the effect of functional group-modifying reagents validated the utility of the plate-based system. The combined purification and assay system provides a convenient and rapid method for the assessment of chlorophyllase activity.  相似文献   

14.
We describe multiwell assays for detecting the accumulation as well as the subsequent oxidation of (14)C-labeled substrates in cultured cells. Accumulation is monitored in real time by an established scintillation proximity assay in which the scintillator is embedded in the plate base primarily detecting cell-associated radiolabel. The substrate oxidation assay is a novel variant of previously described experimental approaches aimed at trapping (14)CO(2) produced by isolated enzymes, organelles, or intact cells. This method uses a standard 96-well tissue culture plate and, on top, an inverted filter plate immersed with NaOH that are clamped into a sandwich sealed with a silicon gasket to obtain gas-tight compartments. (14)CO(2) is captured in the filter and quantified by conventional scintillation. We demonstrate both the accumulation and subsequent oxidation of (14)C-labeled substrates in cultured human myotubes, adipocytes, and hepatocytes. Both methods are adaptable for compound screening; at the same time, these protocols provide easy-to-use and time- saving methods for in vitro studies of cellular fuel handling.  相似文献   

15.
16.
Abstract A chemiluminescence immunoassay (CLIA) was developed to detect Cryptosporidium parvum growth in Madin-Darby canine kidney (MDCK) cell cultures. Optimal results were obtained when MDCK cells were plated at a density of 1 × 104 cells/well (96-well plate) and maintained as a monolayer for 4 days prior to infection with 2 × 104 parasites/well. Two compounds (paromomycin and maduramicin) were evaluated and shown to have selective activity against C. parvum in a dose-dependent manner. There was excellent correlation between CLIA and immunofluorescence assay when assessing anti- C. parvum agents in MDCK cells. CLIA offers advantages over conventional enzyme-linked immunosorbent assay and immunofluorescence assay methods in that it is more sensitive and efficient. The combination of CLIA and MDCK culture provides an efficient tool for evaluating potential anti-cryptosporidial compounds prior to testing in animal models.  相似文献   

17.
Most current assays of HDL functional properties are cell-based. We have developed a fluorometric biochemical assay based on the oxidation of dihydrorhodamine 123 (DHR) by HDL. This cell-free assay assesses the intrinsic ability of HDL to be oxidized by measuring increasing fluorescence due to DHR oxidation over time. The assay distinguishes the oxidative potential of HDL taken from different persons, and the results are reproducible. Direct comparison of this measurement correlated well with results obtained using a validated cell-based assay (r(2) = 0.62, P < 0.001). The assay can be scaled from a 96-well format to a 384-well format and, therefore, is suitable for high-throughput implementation. This new fluorometric method offers an inexpensive, accurate, and rapid means for determining the oxidative properties of HDL that is applicable to large-scale clinical studies.  相似文献   

18.
The Coomassie brilliant blue assay for the determination of protein has been extended to rapidly and conveniently measure the protein concentration of cells growing in culture in a 96-well microtiter format. Modifications of the standard assay include sodium hydroxide to solubilize the cells and ovalbumin, instead of bovine serum albumin, as a protein standard. The procedure allows a large number of small samples to be assayed simultaneously. Two examples of its use, enzyme-specific activity and drug resistance, are shown. An assay for acetylcholinesterase activity in the same culture plate is demonstrated. G418, an inhibitor of cell protein synthesis, is frequently used to select for cells transfected with the neomycin resistance gene. The required concentration of G418 can be easily determined with this protein assay.  相似文献   

19.
Protein tyrosine kinases play critical roles in cell signaling and are considered attractive targets for drug discovery. The authors have applied microARCS (microarrayed compound screening) technology to develop a high-throughput screen for finding inhibitors of the p56lck tyrosine kinase. Initial assay development was performed in a homogeneous time-resolved (LANCE) format in 96-well microplates and then converted into the gel-based microARCS format. The microARCS methodology is a well-less screening format in which 8640 compounds are arrayed on a microplate-sized piece of polystyene and subsequently assayed by placing reagents cast in agarose gels in contact with these compound sheets. A blotting paper soaked with adenosine triphosphate is applied on the gel to initiate the kinase reaction in the gel. Using this screening methodology, 300,000 compounds were screened in less than 40 h. Substantial reagent reduction was achieved by converting this tyrosine kinase assay from a 96-well plate assay to microARCS, resulting in significant cost savings.  相似文献   

20.
This article describes the design and validation of a general procedure for the high-throughput isolation of amylosucrase variants displaying higher thermostability or increased resistance to organic solvents. This procedure consists of 2 successive steps: an in vivo selection that eliminates inactive variants followed by automated screening of active variants to isolate mutants displaying enhanced features. The authors chose an Escherichia coli expression vector, allowing a high production rate of the recombinant enzyme in miniaturized culture conditions. The screening assay was validated by minimizing variability for various parameters of the protocol, especially bacterial growth and protein production in cultures in 96-well microplates. Recombinant amylosucrase production was normalized by decreasing the coefficient of variance from 27% to 12.5%. Selective screening conditions were defined to select variants displaying higher thermostability or increased resistance to organic solvents. A first-generation amylosucrase variant library, constructed by random mutagenesis, was subjected to this procedure, yielding a mutant displaying a 25-fold increased stability at 50 degrees C compared to the parental wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号