首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.  相似文献   

3.
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.  相似文献   

4.
An outer membrane preparation from cells of Escherichia coli K-12 grown in low iron medium was found to retain ferric enterobactin binding activity following solubilization in a Tris-HCl, Na2EDTA buffer containing Triton X-100. Activity was measured by means of a DEAE-cellulose column which separated free and receptor bound ferric enterobactin. The binding activity was greatly reduced in preparations obtained from cells grown in iron rich media or from cells of a colicin B resistant mutant grown in either high or low iron media. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis enabled correlation of this lack of activity to a single band missing in the outer membrane profile of the colicin B mutant. Evidence was obtained for in vitro competition between ferric enterobactin and colicin B for the extracted receptor. The binding specificity of the extracted receptor was examined by competition between ferric enterobactin and several iron chelates including a carbocyclic analogue of enterobactin, cis-1,5,9-tris(2,3-dihydroxybenzamido)cyclododecane. The ferric form of the latter compound supported growth of siderophore auxotrophs, apparently without hydrolysis to dihydroxybenzoic acid and resynthesis into enterobactin. These data may require revision of the accepted mechanism of enterobactin mediated iron utilization.  相似文献   

5.
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.  相似文献   

6.
7.
The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper. In vitro, a mixture of enterobactin and copper was toxic for E. coli cells, but the addition of purified CueO led to their survival. Deletion of fur resulted in copper hypersensitivity that was alleviated by additional deletion of entC, preventing synthesis of enterobactin. In addition, copper added together with 2,3-dihydroxybenzoic acid or enterobactin was able to induce a Phi(cueO-lacZ) operon fusion more efficiently than copper alone. The reaction product of the 2,3-dihydroxybenzoic acid oxidation by CueO that can complex Cu(II) ions was determined by gas chromatography-mass spectroscopy and identified as 2-carboxymuconate.  相似文献   

8.
Biochemical analysis of the enzymatic activity catalyzing the conversion of chorismate to isochorismate in the enterobactin biosynthetic pathway attributed the reaction to the isochorismate synthetase enzyme, designated EntC. However, the lack of mutations defining this activity has hampered the precise identification of the entC structural gene. In this study, we engineered a stable insertion mutation into the chromosomal region between the enterobactin genes fepB and entE. This mutation disrupted the structural gene for a previously identified 44-kilodalton protein and eliminated production of 2,3-dihydroxybenzoic acid, the catechol precursor of enterobactin. The complete nucleotide sequence of this gene was determined and compared with the sequences of other genes encoding chorismate-utilizing proteins. The similarities observed in these comparisons not only indicated that the locus is entC but also supported the premise that these enzymes constitute a family of related proteins sharing a common evolutionary origin. In addition, in this and the accompanying paper (M. S. Nahlik, T. J. Brickman, B. A. Ozenberger, and M. A. McIntosh, J. Bacteriol. 171:784-790, 1989), evidence is presented indicating that the entA product is potentially a secondary factor in the chorismate-to-isochorismate conversion and that the prototypic entC lesion (entC401) resides in the structural gene for the EntA protein. Finally, polarity effects from the insertion mutation in entC on downstream biosynthetic genes indicated that this locus is the promoter-proximal cistron in an ent operon comprising at least five genes. Appropriate regulatory signals upstream of entC suggest that this operon is regulated by iron through interaction with the Fur repressor protein.  相似文献   

9.
The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization.  相似文献   

10.
11.
12.
Tn10 mutants of Escherichia coli MC4100 were screened for their inability to grow under iron deficiency and for their inability to grow under anaerobiosis in the presence of fumarate as an electron acceptor. A strain so obtained (E. coli PBB1) lacked the ability to convert chorismic acid to isochorismic acid. This shows that the gene (entC) encoding isochorismate synthase was mutated. E. coli PBB1 did not produce any detectable amounts of menaquinones (vitamin K2) or enterobactin. When supplemented with isochorismic acid this strain produced menaquinones, indicating that isochorismic acid is involved not only in enterobactin but also in menaquinone biosynthesis. The entC gene was isolated and was shown to be part of the enterobactin gene cluster: It was located on a DNA fragment (9 kb in length) which also carried the entA gene. The DNA fragment was identified by restriction site mapping and was compared to a previously published map of the enterobactin gene cluster. The entC gene on this fragment responds not only to conditions (iron deficiency) that stimulate enterobactin biosynthesis but also to anaerobiosis which results in increased isochorismic acid formation and increased menaquinone biosynthesis. We conclude that isochorismic acid, isochorismic synthase, and the gene (entC) encoding this enzyme are involved in catalytic events at a metabolic branch point from which both enterobactin and menaquinones originate.  相似文献   

13.
14.
Under iron limitation, the plant pathogen Erwinia chrysanthemi produces the catechol-type siderophore chrysobactin, which acts as a virulence factor. It can also use enterobactin as a xenosiderophore. We began this work by sequencing the 5'-upstream region of the fct-cbsCEBA operon, which encodes the ferric chrysobactin receptor and proteins involved in synthesis of the catechol moiety. We identified a new iron-regulated gene (cbsH) transcribed divergently relative to the fct gene, the translated sequence of which is 45.6% identical to that of Escherichia coli ferric enterobactin esterase. Insertions within this gene interrupt the chrysobactin biosynthetic pathway by exerting a polar effect on a downstream gene with some sequence identity to the E. coli enterobactin synthase gene. These mutations had no effect on the ability of the bacterium to obtain iron from enterobactin, showing that a functional cbsH gene is not required for iron removal from ferric enterobactin in E. chrysanthemi. The cbsH-negative mutants were less able to utilize ferric chrysobactin, and this effect was not caused by a defect in transport per se. In a nonpolar cbsH-negative mutant, chrysobactin accumulated intracellularly. These defects were rescued by the cbsH gene supplied on a plasmid. The amino acid sequence of the CbsH protein revealed characteristics of the S9 prolyl oligopeptidase family. Ferric chrysobactin hydrolysis was detected in cell extracts from a cbsH-positive strain that was inhibited by diisopropyl fluorophosphate. These data are consistent with the fact that chrysobactin is a d-lysyl-l-serine derivative. M?ssbauer spectroscopy of whole cells at various states of (57)Fe-labeled chrysobactin uptake showed that this enzyme is not required for iron removal from chrysobactin in vivo. The CbsH protein may therefore be regarded as a peptidase that prevents the bacterial cells from being intracellularly iron-depleted by chrysobactin.  相似文献   

15.
The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd ≈ 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd ≤ 100 nM) and transported it at comparable rates (≥50 pmol/min/109 cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.  相似文献   

16.
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.  相似文献   

17.
Iron is essential for the survival of almost all bacteria. Vibrio cholerae acquires iron through the secretion of a catecholate siderophore called vibriobactin. At present, how vibriobactin chelates ferric ion remains controversial. In addition, the mechanisms underlying the recognition of ferric vibriobactin by the siderophore transport system and its delivery into the cytoplasm specifically have not been clarified. In this study, we report the high-resolution structures of the ferric vibriobactin periplasmic binding protein ViuP and its complex with ferric vibriobactin. The holo-ViuP structure reveals that ferric vibriobactin does not adopt the same iron coordination as that of other catecholate siderophores such as enterobactin. The three catechol moieties donate five, rather than six, oxygen atoms as iron ligands. The sixth iron ligand is provided by a nitrogen atom from the second oxazoline ring. This kind of iron coordination results in the protrusion of the second catechol moiety and renders the electrostatic surface potential of ferric vibriobactin less negatively polarized compared with ferric enterobactin. To accommodate ferric vibriobactin, ViuP has a deeper subpocket to hold the protrusion of the second catechol group. This structural characteristic has not been observed in other catecholate siderophore-binding proteins. Biochemical data show that siderocalin, which is part of the mammalian innate immune system, cannot efficiently sequester ferric vibriobactin in vitro, although it can capture many catecholate siderophores with high efficiency. Our findings suggest that the unique iron coordination found in ferric vibriobactin may be utilized by some pathogenic bacteria to evade the siderocalin-mediated innate immune response of mammals.  相似文献   

18.
The periplasmic protein FepB of Escherichia coli is a component of the ferric enterobactin transport system. We overexpressed and purified the binding protein 23-fold from periplasmic extracts by ammonium sulfate precipitation and chromatographic methods, with a yield of 20%, to a final specific activity of 15,500 pmol of ferric enterobactin bound/mg. Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM. Intrinsic fluorescence measurements of binding by the purified protein, which were more accurate, showed higher affinity for both ferric enterobactin (K(d) = 30 nM) and ferric enantioenterobactin (K(d) = 15 nM), the left-handed stereoisomer of the natural E. coli siderophore. Purified FepB also adsorbed the apo-siderophore, enterobactin, with comparable affinity (K(d) = 60 nM) but did not bind ferric agrobactin. Polyclonal rabbit antisera and mouse monoclonal antibodies raised against nearly homogeneous preparations of FepB specifically recognized it in solid-phase immunoassays. These sera enabled the measurement of the FepB concentration in vivo when expressed from the chromosome (4,000 copies/cell) or from multicopy plasmids (>100,000 copies/cell). Overexpression of the binding protein did not enhance the overall affinity or rate of ferric enterobactin transport, supporting the conclusion that the rate-limiting step of ferric siderophore uptake through the cell envelope is passage through the outer membrane.  相似文献   

19.
The Irp9 protein of Yersinia enterocolitica participates in the synthesis of salicylate, the precursor of the siderophore yersiniabactin. In Pseudomonas species, salicylate synthesis is mediated by two enzymes: isochorismate synthase and isochorismate pyruvate-lyase. Both enzymes are required for complementation of a Yersinia irp9 mutant. However, irp9 is not able to complement Escherichia coli entC for the production of enterobactin, which requires isochorismate as a precursor. These results suggest that Irp9 directly converts chorismate into salicylate.  相似文献   

20.
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号