首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amisulpride, a drug belonging to the benzamide series, demonstrates antischizophrenic and antidepressant (antidysthymic) properties in man. For the pharmacokinetic studies of the racemic drug in man, a method of determination based on solid-phase extraction (SPE) from plasma and HPLC on a stereoselective column was developed. For this aim, one millilitre of plasma, after the addition of the internal standard, tiapride or metoclopramide, is diluted with a borate buffer at pH 9, then automatically loaded onto a SPE C18 100-mg column. The column is washed with different solvents, then eluted with 0.5 ml of methanol. After evaporation of the eluted fraction, the residue is reconstituted in 0.25 ml of eluent mixture. An aliquot is injected onto the HPLC column, a Chiralpak AS, equilibrated with an eluent mixture constituted by n-hexane-ethanol, (67:33, v/v) containing 0.2% (v/v) of diethylamine (DEA) or n-heptane-ethanol, (70:29.8, v/v) containing 0.2% of DEA and connected to a UV detector set at 280 nm or to a fluorimetric detector set at λex = 280 nm and λem = 370 nm. The limit of quantitation (LOQ) in human plasma is 2.5 ng ml−1 for both S-(−)- and R-(+)-amisulpride isomers with both detection methods. The method has been demonstrated to be linear in the range 2.5–320 ng ml−1 for both R-(+)- and S-(−)-amisulpride in human plasma with both UV and luorescence detection. Absolute recovery of S(−)- and R-(+)-amisulpride enantimers from human plasma, as well as selectivity, precision and accuracy have been demonstrated to be satisfactory for pharmacokinetics in man and equivalent for both the proposed methods that have been cross-validated on real dosed human plasma samples. The methods have been used for clinical pharmacokinetic studies allowing pharmacokinetic parameters for amisulpride enantiomers in agreement with those obtained for the racemate to be obtained. After dilution with water, urinary samples from subjects treated with amisulpride racemate can be analysed according to the method used for plasma.  相似文献   

2.
Stability‐indicating high‐performance liquid chromatography (HPLC) and spectrofluorimetric methods were developed for determination of empagliflozin (EGF). EGF was subjected to oxidation, wet heat, photo‐degradation, acid hydrolysis and alkali hydrolysis. The alkaline degradation pathway was subjected to a kinetics study as the major product obtained after stress conditions. Arrhenius plots were constructed and the activation energies of the degradation process were calculated. HPLC was used for the kinetic study as it enabled simultaneous determination of EGF and the degradation product while the spectrofluorimetric assay was applied to content uniformity testing due to its higher sensitivity and lower limit of detection (LOD). Isocratic chromatographic elution was attained for HPLC on a Intersil® C18 column (150 mm × 4 mm, 5 μm), using a mobile phase of acetonitrile–potassium dihydrogen phosphate buffer pH 4, (50:50, v/v) at a flow rate of 1 ml/min with ultraviolet (UV) detection at 225 nm. The relative fluorescence intensity was recorded by spectrofluorimeter applying synchronous mode using ?λ = 70 nm at 297.6 nm. Linearity ranges were found to be 5–50 μg/ml and 50–1000 ng/ml for HPLC and spectrofluorimetric methods, respectively.  相似文献   

3.
A high-performance liquid chromatographic method for the analysis of sulpiride, N-ethyl-2-(2-methoxy-5-sulphonamido-benzamido-methyl)-pyrrolidine, in body fluids is described. A structurally related compound, N-ethyl-2-(2,4-dimethoxy-benzamido-methyl)-pyrrolidine, was used as internal standard.A fluorescence detector with excitation maximum at 299 nm and emission maximum at 342 nm was used for the quantitation. The detection limit was about 10 ng/ml in serum and cerebrospinal fluid and about 200 ng/ml in urine. The experimental error was 5–10% in the concentration range 25–100 ng/ml. Some preliminary data from a pharmacokinetic study in healthy volunteers are presented. The half-life for sulpiride in serum was about 8 h. Sulpiride was also measured in cerebrospinal fluid from five drug-treated psychotic patients.  相似文献   

4.
An isocratic, reversed-phase high-performance liquid chromatographic procedure (HPLC) was developed for determination of the neuroprotective agent riluzole in mice plasma, brain and spinal cord. The procedure is based on isolation of the compound and the internal standard from plasma and central nervous system tissues using a Bakerbond spe C8 cartridge, with satisfactory recovery and specificity. Separation was on a C18 column, coupled with an UV detector at 263 nm. The assay was linear over a wide range, with a lower limit of quantification of 100 ng ml(-1) or g(-1) using 0.1 ml of plasma and about 100mg of brain tissue. The precision and accuracy were within the acceptable limits for an HPLC assay. The method is currently used to support pharmacological studies of the activity of riluzole when given in combination with other potential neuroprotective agents in an animal model of familiar amyotrophic lateral sclerosis (SOD1-G93A transgenic mice).  相似文献   

5.
A reversed phase high-performance liquid chromatographic (HPLC) method with UV detection was developed for the simultaneous determination of imatinib (Gleevec, Glivec, STI571) and AMN107 in cultured tumour cells, using clozapine as an internal standard. The compounds of interest were extracted by liquid-liquid extraction using TOXI-TUBES((R)) A extraction tubes. Chromatographic separation was performed on a Phenomenex Gemini C18 reversed phase column (150 mm x 2.0 mm, 5 microm particle size), using a mixture of 65% CH(3)OH (methanol) and 35% NH(4)Ac (Ammonium acetate) buffer (20mM, pH 10). Separation was achieved under isocratic conditions at a flow rate of 0.5 ml/min. Imatinib, clozapine and AMN107 are detected by UV detection at 260 nm. Calibration curves were linear from 50 to 7500 ng/ml with correlation coefficients (r(2)) better than 0.998. The limit of quantitation (LOD) was 50 ng/ml. The method has been successfully applied to a cellular kinetics study.  相似文献   

6.
An improved HPLC method using a silica gel column with fluorescence detection (excitation at 300 nm and emission at 365 nm) was developed for the determination of sulpiride concentrations in plasma. Analysis of sulpiride in plasma samples was simplified by a one-step liquid–liquid extraction after alkaline treatment of only 1 ml of plasma. The low limit of quantitation was 20 ng/ml with a coefficient of variation of less than 20%. A linear range was found from 20 to 1500 ng/ml. This HPLC method was validated with the precision for inter-day and intra-day runs being 0.36–8.01% and 0.29–5.25%, respectively, and the accuracy (standard deviation of mean, SD) for inter-day and intra-day runs being −1.58 to 5.02% and −2.14 to 5.21%, respectively. Bioequivalence of the two products was evaluated in 12 normal healthy male volunteers in a single-dose, two-period, two-sequence, two-treatment cross-over study. Sulpiride plasma concentrations were analyzed with this validated HPLC method. Results demonstrated that the two tablet formulations of sulpiride appear to be bioequivalent.  相似文献   

7.
A sensitive and reproducible high performance liquid chromatography method with UV detection was described for the determination of aesculin in rat plasma. After deproteinization by methanol using metronidazole as internal standard (I.S.), solutes were evaporated to dryness at 40 degrees C under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of mobile phase and a volume of 20 microl was injected into the HPLC for analysis. Solutes were separated on a Diamonsil C18 column (250 mm x 4.6 mm i.d., 5 microm particle size, Dikma) protected by a ODS guard column (10 mm x 4.0 mm i.d., 5 microm particle size), using acetonitrile-0.1% triethylamine solution (adjusted to pH 3.0 using phosphoric acid) (10:90, v/v) as mobile phase (flow-rate 1.0 ml/min), and wavelength of the UV detector was set at 338 nm. No interference from any endogenous substances was observed during the elution of aesculin and internal standard (I.S., metronidazole). The retention times for I.S and aesculin were 10.4 and 12.4 min, respectively. The limit of quantification was evaluated to be 57.4 ng/ml and the limit of detection was 24.0 ng/ml. The method was used in the study of pharmacokinetics of aesculin after intraperitoneal injection (i.p.) administration in rats.  相似文献   

8.
A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for determination of scopoletin in rat plasma using psoralen as internal standard. Chromatographic separation was achieved on a C(18) column using methanol and distilled water (49:51, v/v) containing 0.05% (v/v) phosphoric acid as mobile phase. The UV detector was set at 345 nm. The calibration curve was linear over the range of 0.165-9.90 microg/ml with a correlation coefficient of 0.9994. The recovery for plasma samples of 0.165, 1.32 and 6.60 microg/ml was 93.2%, 95.9% and 95.5%, respectively. The RSD of intra- and inter-day assay variations was less than 6.7%. This HPLC assay is a precise and reliable method for the analysis of scopoletin in pharmacokinetic studies.  相似文献   

9.
A new HPLC assay for plasma arginine-vasotocin (AVT) and isotocin (IT) determination based on fluorescence detection preceded by combination of solid-phase extraction (SPE) and fluorescence derivatization is presented. Plasma samples retained on solid support were purified and then derivatized by the fluorescent compound 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). The peptide derivatives were eluted from cartridges, pre-concentrated and analyzed by HPLC system with fluorescent detection. The separation was carried out on a reversed-phase column with solvent gradient system. The assay was linear in the range 15-220 pmol ml(-1) for AVT r2=0.998 and 10-220 pmol ml(-1) for IT r2=0.996. The detection limits for AVT and IT were 0.8 and 0.5 pmol ml(-1) (3:1, signal-to-noise), respectively. The recoveries of derivatized hormones were in the range 89-93%. Both of the inter- and intra-day assay precision were below 5.5 and 9% for AVT and IT, respectively. The assay should be also applicable to plasma and tissue samples from other animals with only minor modification.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) assay with UV detection has been developed for the quantitative determination of the antiangiogenic agent SU5416 in human plasma. Sample pretreatment involved a single protein-precipitation step with acetonitrile containing the internal standard, chrysin. Separation of the compounds of interest was achieved on a column packed with HP Zorbax C(8) material (5microm particle size; length: 150mm; i.d.: 4.6mm) using a dual solvent system of 0.01M aqueous ammonium acetate and acetonitrile delivered as a nonlinear gradient at a flow-rate of 1.00ml/min. Simultaneous UV detection was performed at 440nm (SU5416) and 268nm (chrysin). The calibration graph was fit to log-transformed response-concentration data over a range of 10-5000ng/ml. Values for accuracy and precision, obtained from six quality controls analyzed on different days in replicates of 3 or 6, ranged 92.9-109 and 0.8-6.2%, respectively. The developed method was successfully applied to study the pharmacokinetics of SU5416 in a cancer patient receiving the drug as a 1h infusion.  相似文献   

11.
A procedure for determination of rifampicin and 25-desacetylrifampicin in plasma by HPLC was developed. The plasma proteins are precipitated by acetonitrile and the supernatant layer (50 microliters) is used for the assay under isocratic conditions on an analytical column 250 x 4.6 mm in size containing the reversed phase sorbent (C18). The size of the precolumn is 50 x 4.6 mm. An UV detector (at lambda 335 nm) is used. For preparing the mobile phase 630 ml of methanol and 370 ml of 0.058 M sodium nitrite solution are mixed. The flow rate of the mobile phase is 40.7 ml/min. The assay duration is about 10 min. The retention time is 9.6 min for rifampicin and 6.5 min for 25-desacetylrifampicin. The minimum detectable amount of the antibiotic and its metabolite is 0.10 micrograms/ml. The standard curves of rifampicin and 25-desacetylrifampicin are linear within the concentration ranges of 0.5-100 and 0.5-10 micrograms/ml respectively. The procedure is useful in studies on pharmacokinetics of rifampicin and 25-desacetylrifampicin.  相似文献   

12.
An HPLC method was developed for the determination of a new oxazolidinone, DA-7867 (I), in human plasma and urine and in rat tissue homogenates. To 100 microl of biological sample, 300 microl acetonitrile and 50 microl methanol containing 10 microg/ml DA-7858 (the internal standard) were added. After vortex-mixing and centrifugation, the supernatant was evaporated under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of the mobile phase and a 50-microl aliquot was injected directly onto the reversed-phase (C(18)) column. The mobile phase, 20 mM KH2PO4:acetonitrile (75:25, v/v) was run at a flow rate of 1.5 ml/min and the column effluent was monitored by a UV detector set at 300 nm. The retention times of I and DA-7858 were approximately 6.5 and 8.7 min, respectively. The detection limits of I in human plasma and urine and in rat tissue homogenates were 20, 20, and 50 ng/ml, respectively.  相似文献   

13.
A gradient HPLC method with combined ultraviolet and fluorescence detection was developed for the simultaneous determination of eight beta-blockers (alprenolol, atenolol, metoprolol, nadolol, pindolol, propranolol, sotalol and timolol) in corneal permeability studies in vitro. Fluorescence detection with excitation wavelength at 230 nm and emission at 302 nm was selective for six of the compounds, whereas UV detection at 205 nm was able to detect all the compounds. Calibration was performed with fluorescence detection for six compounds from 50 or 200 nM to 3 microM, and with UV detection for all the eight compounds from 100 or 200 nM to 30 microM. With optimized fluorescence detection, detection limits between 0.7 and 1.3 nM (0.035-0.065 pmol per 50 microl injection) were obtained for atenolol, metoprolol, nadolol and sotalol. A mixture of eight beta-blockers was used in cassette dosing permeability studies with a cultured corneal epithelium. The HPLC method revealed marked differences in the permeation between hydrophilic and lipophilic beta-blockers through the corneal epithelial cell culture model.  相似文献   

14.
A sensitive high-performance liquid chromatographic method for determination of ranitidine (RAN) in rabbit plasma is described. The method is based on liquid-liquid extraction, labeling with dansyl chloride and monitoring with fluorescence detector at 338nm (ex)/523nm (em). Plasma samples were extracted with diethyl ether alkalinized with 1M sodium hydroxide. Ephedrine HCl (EPH-HCl) was used as internal standard. Both, RAN and EPH were completely derivatized after heating at 60 degrees C for 10min in sodium bicarbonate solution (pH 9.5). The derivatized samples were analyzed by HPLC using Agilent Zorbax Extended C18 column (150mmx4.6mm i.d.) and mobile phase consists of 48% acetonitrile and 52% sodium acetate solution (0.02M, pH 4.6). The linearity of the method was in the range of 0.025-10microg/ml. The limits of detection (LOD) and quantification (LOQ) were 7.5+/-0.18 and 22.5+/-0.12ng/ml, respectively. Ranitidine recovery was 97.5+/-1.1% (n=6; R.S.D.=1.8%). The method was applied on plasma collected from rabbits at different time intervals after oral administration of 5mg/kg ranitidine HCl.  相似文献   

15.
A selective HPLC method for determination of Huperzine A in Huperzia serrata Extract has been developed and validated. Huperzine A was dissolved in 0.01 mol/L HCl, chromatographed on an Agilent Zorbax SB-C18 (150 mm x 4.6 mm i.d., 5 microm) column, with a mobile phase consisting of methanol-1mM L-Lysine water solution (50:50, v/v), and detected at 310 nm. The UV peak areas were used for quantitation of Huperzine A content. The correlation coefficient (R(2)) of the calibration was 0.9999 over the range of 1-25 microg/ml and intra- and interday precision over this range were not more than 2%. The method was successfully applied to characterize and determine the Huperzine A in Huperzia serrata Extract.  相似文献   

16.
New polar reversed-phase stationary phases in HPLC provide specific selectivities which can help to solve traditional chromatographic problems related to the development of chromatographic methods with widely different retention times for the sample components. One such case is the analysis of pharmaceutical formulations against the common cold. Acetaminophen, phenylephrine and chlorpheniramine, compounds with different polarities, are frequently associated in these drugs. An isocratic and rapid HPLC method for the simultaneous determination of the three compounds, acetaminophen, phenylephrine and chlorpheniramine, in capsules as pharmaceutical formulations, including the separation of impurities (4-aminophenol and 4-chloracetanilide) and excipients, has been developed and validated. The final chromatographic conditions employed a Supelco Discovery HS PEG column poly(ethyleneglycol) 15x0.46 cm, 5 microm. The mobile phase was 20 mM phosphate buffer, pH 7.0-acetonitrile (90:10, v/v) at a flow-rate of 1 ml/min. UV detection was performed at 215 nm for all the compounds except acetaminophen, which was measured at 310 nm. Validation parameters permit us to consider this method suitable.  相似文献   

17.
A rapid, reproducible and accurate high-performance liquid chromatographic (HPLC) method for the quantitative determination of sphingomyelin in rat brain was developed and validated using normal-phase silica gel column, acetonitrile-methanol-water (65:18:17 (v/v)) at a flow rate of 1 ml/min, isocratic elution, UV detection at 207 nm and 1,2-dimyristoyl-sn-glycero-3-phosphocholine as an internal standard. Total run time was 10.0 min. The calibration curve was linear over the range of 0.025-0.4 mg/ml sphingomyelin (R2>0.99). The intra-day coefficient of variation ranged from 1.4% to 2.2%. The average inter-day coefficient of variation over a period of 4 days was 3.1%. The practical limit of detection was 0.005 mg/ml with a quantification limit of 0.01 mg/ml.  相似文献   

18.
A simple method is described for the determination of the cyclooxygenase-2 specific inhibitor celecoxib in human serum by HPLC using the demethylated analogue as internal standard. After protein precipitation with acetonitrile, samples were extracted with chloroform. Separation was achieved on a Prontosil C18 AQ column (150x3 mm I.D., 3-microm particle size) at a flow-rate of 0.35 ml/min using water-acetonitrile (40:60, v/v) as the mobile phase. Using fluorescence detection with excitation at 240 nm and emission at 380 nm, the limit of quantification was 12.5 ng/ml for a sample size of 0.5 ml of serum. The assay was linear in the concentration range of 12.5-1500 ng/ml and showed good accuracy and reproducibility. At all concentrations intra- and inter-assay variabilities were below 11% with less than 9% error. The method was applied to the determination of celecoxib for pharmacokinetic studies in man.  相似文献   

19.
用高效液相色谱法(HPLC)测定肌苷中有关物质和降解产物   总被引:1,自引:0,他引:1  
用HPLC测定肌苷中有关物质和降解产物 ,与主药有良好的分离效果。色谱柱为HypersilC1 8(2 5 0mm× 4 .6mm ,5 μm) ,流动相甲醇 -水 (甲醇与水体积比为 10∶90 ) ,流速 1mL·min- 1 ,检测波长 2 4 8nm。  相似文献   

20.
Sulpiride and tiapride are often used in the treatment of depression, schizophrenia and psychopathology of senescence, gastric or duodenal ulcers and are also partly excreted by kidney. This work developed a simple and sensitive method for their simultaneous monitoring in human urine based on capillary electrophoresis coupled with electrochemiluminescence detection by end-column mode. beta-Cyclodextrin (beta-CD) was used as an additive to the running buffer to obtain the absolute separation of sulpiride and tiapride. Under optimized conditions the proposed method displayed a linear range from 1.0 x 10(-7) to 1.0 x 10(-4) M for both sulpiride and tiapride with the correlation coefficients more than 0.995 (n = 6). Their limits of detection were 1.0 x 10(-8) M (45 amol) and 1.5 x 10(-8) M (68 amol) at a signal to noise ratio of 3, respectively. The relative standard deviations for six determinations of 2.0 microM sulpiride and 3.0 microM tiapride were 1.8 and 2.5%, respectively. For practical application an extract step with ethyl acetate at pH 11 was performed to eliminate the influence of ionic strength in sample. The recoveries of sulpiride and tiapride at different levels in human urine were between 84 and 95%, which showed that the method was valuable in clinical and biochemical laboratories for monitoring sulpiride and tiapride for various purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号