首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug‐loaded PLGA‐lecithin‐PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti‐nucleolin aptamers for site‐specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X‐ray photoelectron spectroscopy (XPS). The drug‐loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF‐7 and GI‐1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug‐loading studies indicated that under the same drug loading, the aptamer‐targeted NPs show enhanced cancer killing effect compared to the corresponding non‐targeted NPs. In addition, the PLGA‐lecithin‐PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer‐PLGA‐lecithin‐PEG NPs are potential carrier candidates for differential targeted drug delivery. Biotechnol. Bioeng. 2012; 109: 2920–2931. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.  相似文献   

3.
多数抗肿瘤药物的水溶性差、系统毒性和多药耐药性已成为其临床应用所面临的主要问题,而利用聚乙二醇材料构建前药或合适的 递药系统来克服这些问题,备受广大药学研究者的关注。以具有良好抗肿瘤活性和分子荧光特性的阿霉素为例,综述聚乙二醇在化疗药物 前药和递药系统的构建及制备等成药性研究中的应用,为高效低毒抗肿瘤药品的进一步研究与开发提供参考。  相似文献   

4.
Efficient intracellular targeting of drugs and drug delivery systems (DDSs) is a major challenge that should be overcome to enhance the therapeutic efficiency of biopharmaceuticals and other intracellularly-acting drugs. Studies that quantitatively assess the mechanisms, barriers, and efficiency of intracellular drug delivery are required to determine the therapeutic potential of intracellular targeting of nano-delivery systems. In this study we report development and application of a novel ‘IntraCell’ plugin for ImageJ that is useful for quantitative assessment of uptake and intracellular localization of the drug/DDS and estimation of targeting efficiency. The developed plugin is based on threshold-based identification of borders of cell and of the individual organelles on confocal images and pixel-by-pixel analysis of fluorescence intensities.We applied the developed ‘IntraCell’ plugin to investigate uptake and intracellular targeting of novel endoplasmic reticulum (ER)-targeted delivery system based on PLGA nanoparticles decorated with ER-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker. Decoration of the nanoparticles with peptidic residues affected their uptake and intracellular trafficking in HeLa cells, indicating that the targeting peptide was identified as ER-targeting signal by the intracellular trafficking mechanisms in HeLa cells and that these mechanisms can handle nano-DDS of the size comparable to some intracellular vesicles (hundreds of nanometers in diameter).We conclude that decoration of nanoparticles with peptidic residues affects their intracellular localization and trafficking and can be potentially used for intracellularly-targeted drug delivery. ‘IntraCell’ plugin is an useful tool for quantitative assessment of efficiency of uptake and intracellular drug targeting. In combination with other experimental approaches, it will be useful for the development of intracellularly-targeted formulations with enhanced and controlled drug pharmacological activities, such as delivery of antigenic peptides for anticancer vaccination and for other applications.  相似文献   

5.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

6.
Jin Y  Song L  Su Y  Zhu L  Pang Y  Qiu F  Tong G  Yan D  Zhu B  Zhu X 《Biomacromolecules》2011,12(10):3460-3468
Oxime bonds dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their own niche. In the present work, oxime linkages were confirmed to be a robust tool for the design of pH-sensitive polymeric drug delivery systems. The triblock copolymer (PEG-OPCL-PEG) consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic oxime-tethered polycaprolactone (OPCL) was successfully prepared by aminooxy terminals of OPCL ligating with aldehyde-terminated PEG (PEG-CHO). Owing to its amphiphilic architecture, PEG-OPCL-PEG self-assembled into the micelles in aqueous media, validated by the measurement of critical micelle concentration (CMC). The MTT assay showed that PEG-OPCL-PEG exhibited low cytotoxicity against NIH/3T3 normal cells. Doxorubicin (DOX) as a model drug was encapsulated into the PEG-OPCL-PEG micelles. Drug release study revealed that the DOX release from micelles was significantly accelerated at mildly acid pH of 5.0 compared to physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery systems with oxime linkages. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. MTT assay against HeLa cancer cells showed DOX-loaded PEG-OPCL-PEG micelles had a high anticancer efficacy. All of these results demonstrate that these polymeric micelles self-assembled from oxime-tethered block copolymers are promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

7.
The purpose of this study was to design and characterize a zero-order bioresorbable reservoir delivery system (BRDS) for diffusional or osmotically controlled delivery of model drugs including macromolecules. The BRDS was manufactured by casting hollow cylindrical poly (lactic acid) (PLA): polyethylene glycol (PEG) membranes (10 x 1.6 mm) on a stainless steel mold. Physical properties of the PLA:PEG membranes were characterized by solid-state thermal analysis. After filling with drug (5 fluorouracil [5FU] or fluorescein isothiocyanate [FITC]-dextran:mannitol, 5:95 wt/wt mixture) and sealing with viscous PLA solution, cumulative in vitro dissolution studies were performed and drug release monitored by ultraviolet (UV) or florescence spectroscopy. Statistical analysis was performed using Minitab (Version 12). Differential scanning calorimetry thermograms of PLA:PEG membranes dried at 25 degrees C lacked the crystallization exotherms, dual endothermal melting peaks, and endothermal glass transition observed in PLA membranes dried at -25 degrees C. In vitro release studies demonstrated zero-order release of 5FU for up to 6 weeks from BRDS manufactured with 50% wt/wt PEG (drying temperature, 25 degrees C). The release of FITC dextrans of molecular weights 4400, 42 000, 148 000, and 464 000 followed zero-order kinetics that were independent of the dextran molecular weight. When monitored under different concentrations of urea in the dissolution medium, the release rate of FITC dextran 42 000 showed a linear correlation with the calculated osmotic gradient(DeltaPi). This study concludes that PEG inclusion at 25 degrees C enables manufacture of uniform, cylindrical PLA membranes of controlled permeability. The absence of molecular weight effects and a linear dependence of FITC-dextran release rate on DeltaPi confirm that the BRDS can be modified to release model macromolecules by an osmotically controlled mechanism.  相似文献   

8.
Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10–100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.  相似文献   

9.
Cancer is one of the major life threatening diseases, with higher mortality rate and morbidity. It is always a challenge for effective drug delivery and release of drug in specific tumor sites. Therefore to identify the synergistic effect of chemotherapeutic drug and photo thermal agent on tumor area, Doxorubicin (DOX) acts as anticancer agent but it has low aqueous solubility so its clinical application is limited. The present study developed doxorubicin (DOX) were designed to be with the poly ethylene glycol (PEG) functionalized copper and selenium (Cu-Se) nanoparticles (PEG@Cu-Se+DOX) and it is efficiently synthesized and enhance its aqueous formulation and improve the prostate cancer (DU145 and LNCaP) activity. The characteristics like mono dispersity, size stability and constant spectral of as-synthesized nanoparticles are comparably excellent than DOX alone. Also the enhanced cellular uptake and in vitro cytoxicicty suggests these nanoparticles selectively killing prostate cancer. In this present study explained that PEG@Cu-Se+DOX as a safe and hopeful strategy for chemotherapeutics of photothermal therapy and deserve for further clinical evaluations.  相似文献   

10.
Biocompatible mesoporous silica nanoparticles, containing the fluorescence dye fluorescein isothiocyanate (FITC), provide a promising system to deliver hydrophobic anticancer drugs to cancer cells. In this study, we investigated the mechanism of uptake of fluorescent mesoporous silica nanoparticles (FMSN) by cancer cells. Incubation with FMSN at different temperatures showed that the uptake was higher at 37°C than at 4°C. Metabolic inhibitors impeded uptake of FMSN into cells. The inhibition of FMSN uptake by nocodazole treatment suggests that microtubule functions are required. We also report utilization of mesoporous silica nanoparticles to deliver a hydrophobic anticancer drug paclitaxel to PANC-1 cancer cells and to induce inhibition of proliferation. Mesoporous silica nanoparticles may provide a valuable vehicle to deliver hydrophobic anticancer drugs to human cancer cells.  相似文献   

11.
Convenient methods for the rapid, parallel synthesis of diversely functionalized nanoparticles will enable discovery of novel formulations for drug delivery, biological imaging, and supported catalysis. In this report, we demonstrate parallel synthesis of brush-arm star polymer (BASP) nanoparticles by the "brush-first" method. In this method, a norbornene-terminated poly(ethylene glycol) (PEG) macromonomer (PEG-MM) is first polymerized via ring-opening metathesis polymerization (ROMP) to generate a living brush macroinitiator. Aliquots of this initiator stock solution are added to vials that contain varied amounts of a photodegradable bis-norbornene crosslinker. Exposure to crosslinker initiates a series of kinetically-controlled brush+brush and star+star coupling reactions that ultimately yields BASPs with cores comprised of the crosslinker and coronas comprised of PEG. The final BASP size depends on the amount of crosslinker added. We carry out the synthesis of three BASPs on the benchtop with no special precautions to remove air and moisture. The samples are characterized by gel permeation chromatography (GPC); results agreed closely with our previous report that utilized inert (glovebox) conditions. Key practical features, advantages, and potential disadvantages of the brush-first method are discussed.  相似文献   

12.
Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.  相似文献   

13.
For the development of surface-functionalized gold nanoparticles as cellular probes and delivery agents, we have synthesized hetero-bifunctional poly(ethylene glycol) (PEG, MW 1500) having a thiol group on one terminus and a reactive functional group on the other for use as a flexible spacer. Coumarin, a model fluorescent dye, was conjugated to one end of the PEG spacer and gold nanoparticles were modified with coumarin-PEG-thiol. Surface attachment of coumarin through the PEG spacer decreased the fluorescence quenching effect of gold nanoparticles. The results of cellular cytotoxicity and fluorescence confocal analyses showed that the PEG spacer-modified nanoparticles were essentially non-toxic and could be efficiently internalized in the cells within 1 hour of incubation. Intracellular particle tracking using a Keck 3-D Fusion Microscope System showed that the functionalized gold nanoparticles were rapidly internalized in the cells and localized in the peri-nuclear region. Using the PEG spacer, the gold nano-platform can be conjugated with a variety of biologically relevant ligands such as fluorescent dyes, antibodies, etc in order to target, probe, and induce a stimulus at the target site.  相似文献   

14.
Chitosan (CS) nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP), dextran sulphate (DS) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm) with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95%) and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1), in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting.  相似文献   

15.
Carbohydrates on cell surfaces contribute a variety of communications between the cell and its environment, and they have been assumed to act as markers for cellular recognition. In this research, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer nanoparticles, which can react with specific carbohydrates of target cells, were newly prepared to serve as novel drug carriers. A water-soluble MPC polymer bearing hydrazide groups (PMBH) was synthesized by conventional radical polymerization. The MPC polymer showed amphiphilic nature and worked as an emulsifier to form nanoparticles. The nanoparticles covered with PMBH were prepared by the solvent evaporation method and exhibited monodispersity. They were approximately 200 nm in diameter and -2.0 mV in surface potential. According to a surface analysis of the nanoparticles, phosphorylcholine and hydrazide groups were observed, and the surface was fully covered with PMBH. Unnatural carbohydrates having ketone groups on human cervical carcinoma cell (HeLa) surfaces were expressed by treatment with levulinoyl mannosamine (ManLev). When the PMBH nanoparticles were in contact with the ManLev-treated HeLa cells, they accumulated in the cells. In contrast, the nanoparticles were not observed in native HeLa cells (without unnatural carbohydrates). These results indicate that the hydrazide groups of the nanoparticles selectively reacted to the ketone groups of the carbohydrates on the cell surface. The PMBH nanoparticles immobilized with anticancer drugs such as doxorubicin or paclitaxel were in contact with either ManLev-treated or untreated HeLa cells. The viability of the ManLev-treated HeLa cells was effectively reduced, but that of the untreated cells was preserved. This indicated that the anticancer drugs were selectively delivered to the ManLev-treated cells. Nonspecific cellular uptake of the nanoparticles was effectively reduced by MPC polymer coating. Furthermore, the immobilization processes of the drugs differed because of the solubility of the drugs. In conclusion, cellular-specific drug delivery by means of the novel nanoparticles was demonstrated with the selective reaction between unnatural carbohydrates on the cell surface and the hydrazide groups bearing the phosphorylcholine polymer nanoparticles.  相似文献   

16.
Cervical cancer is a deadly gynecological malignancy in need of innovative treatment strategies. Emerging preclinical data has suggested the benefits of nanocarriers over the traditional chemotherapy for cancer treatment. In particular, gold nanoparticles are gaining popularity due to gold's inert nature, limited side effects, good cytocompatibility, and flexibility in preparation/modification. We conjugated polyethylene glycol (PEG) with hollow gold nanospheres (HGNs) and loaded the pegylated HGNs with an anticancer drug, cisplatin to target cervical cancer. HGNs were irradiated with noninfrared laser to increase the penetration of drug into tumor tissue and improve the delivery of cisplatin. We investigated the comparative characterization studies of prepared cisplatin loaded pegylated HGNs (cis PEG-HGNs), free cisplatin, cisplatin loaded HGNs (cis-HGNs), cis PEG-HGNs without laser, and cis PEG-HGNs with laser and its effects over cervical cancer cells. Transmission electron microscopy photomicrographs confirmed the integrity of prepared HGNs. While no significant difference was observed between encapsulation efficiency and drug loading of cis-HGNs (84.6%) and cis PEG-HGNs (86.7%), the encapsulation efficiency increased almost twice in HGNs, compared with control gold nanoparticles (GNs) because of the hollow cavity in HGNs. In-vitro cytotoxicity was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using HeLa cells. With irradiation, HGNs induced much elevated cytotoxicity. Not only HGNs were internalized by HeLa cells, they were retained in the cellular compartment. We also tested formulations in vivo and observed that the irradiated cis-HGNs and cis PEG-HGNs were most effective in regressing tumors in mice.  相似文献   

17.
pH-magnetic dual-responsive nanocomposites have been widely used in drug delivery and gene therapy. Recently, a polypseudorotaxane functionalized magnetic nanoparticle (MNP) was developed by synthesizing the magnetic nanoparticles with cyclodextrin (CD) molecules (CDMNP) via polyethylene glycol (PEG) (CDMNP-PEG-CD). The purpose of this study was to explore the antigenicity and immunogenicity of the nanoparticles in vivo prior to their further application explorations. Here, nanoparticles were assessed in vivo for retention, bio-distribution and immuno-reactivity. The results showed that, once administered intravenously, CDMNP-PEG-CD induced a temporary blood monocyte response and was cleared effectively from the body through the urine system in mice. The introduction of β-CD and PEG/β-CD polypseudorotaxane on SiO2 magnetic nanoparticles (SOMNP) limited particle intramuscular dispersion after being injected into mouse gastrocnemius muscle (GN), which led to the prolonged local inflammation and muscle toxicity by CDMNP and CDMNP-PEG-CD. In addition, T cells were found to be more susceptible for β-CD–modified CDMNP; however, polypseudorotaxane modification partially attenuated β-CD–induced T cell response in the implanted muscle. Our results suggested that CDMNP-PEG-CD nanoparticles or the decomposition components have potential to prime antigen-presenting cells and to break the muscle autoimmune tolerance.  相似文献   

18.
Based on fourth generation diaminobutane poly(propylene imine) dendrimer, a novel targeted drug nanocarrier was prepared, bearing protective PEG chains and a folate targeting ligand. As a control a PEGylated derivative without folate was also synthesized. The encapsulation and release properties of these PEGylated derivatives were investigated employing etoposide, an anticancer hydrophobic drug. Enhanced solubility of etoposide was achieved inside the dendrimeric scaffold which was subsequently released in a controlled manner. These properties coupled with specificity towards the folate receptor and the low toxicity render folate functionalized PEGylated poly(propylene imine) dendrimer promising candidate for targeted drug delivery.  相似文献   

19.
Recent advances have been made in cancer chemotherapy through the development of conjugates for anticancer drugs. Many drugs have problems of poor stability, water insolubility, low selectivity, high toxicity, and side effects. Most of the chitosan nanoparticles showed to be good drug carriers because of their biocompatibility, biodegradability, and it can be readily modified. The anticancer drug with chitosan nanoparticles displays efficient anticancer effects with a decrease in the adverse effects of the original drug due to the predominant distribution into the tumor site and a gradual release of free drug from the conjugate which enhances drug solubility, stability, and efficiency. In this review, we discuss wider applications of numerous modified chitosan nanoparticles against different tumors and also focusing on the administration of anticancer drugs through various routes. We propose the interaction between nanosized drug carrier and tumor tissue to understand the synergistic interplay. Finally, we elaborate merits of drug delivery system at the tumor site, with emphasizing future challenges in cancer chemotherapy.  相似文献   

20.
Dioleoylphosphatidylethanolamine (DOPE)-containing liposomes that demonstrated pH-dependent release of their contents were stabilized in the bilayer form through the addition of a cleavable lipid derivative of polyethylene glycol (PEG) in which the PEG was attached to a lipid anchor via a disulfide linkage (mPEG-S-S-DSPE). Liposomes stabilized with either a non-cleavable PEG (mPEG-DSPE) or mPEG-S-S-DSPE retained an encapsulated dye at pH 5.5, but treatment at pH 5.5 of liposomes stabilized with mPEG-S-S-DSPE with either dithiothreitol or cell-free extracts caused contents release due to cleavage of the PEG chains and concomitant destabilization of the DOPE liposomes. While formulations loaded with doxorubicin (DXR) were stable in culture media, DXR was rapidly released in human plasma. pH-Sensitive liposomes, targeted to the CD19 epitope on B-lymphoma cells, showed enhanced DXR delivery into the nuclei of the target cells and increased cytotoxicity compared to non-pH-sensitive liposomes. Pharmacokinetic studies suggested that mPEG-S-S-DSPE was rapidly cleaved in circulation. In a murine model of B-cell lymphoma, the therapeutic efficacy of an anti-CD19-targeted pH-sensitive formulation was superior to that of a stable long-circulating formulation of targeted liposomes despite the more rapid drug release and clearance of the pH-sensitive formulation. These results suggest that targeted pH-sensitive formulations of drugs may be able to increase the therapeutic efficacy of entrapped drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号