首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
Yang DC  Tsay HJ  Lin SY  Chiou SH  Li MJ  Chang TJ  Hung SC 《PloS one》2008,3(2):e1540

Background

Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown.

Methods and Findings

We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARγ2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-κB Ligand to Osteoprotegerin (RANKL/OPG) gene expression – the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish.

Conclusions

Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for opioid receptor-like (ORL1) receptor, transduces signaling cascades implicated in MAPK, PKC, PLC, and calcium, etc. This study was designed to investigate the intracellular signaling mechanism of N/OFQ in human dopaminergic neuroblastoma SH-SY5Y cells. N/OFQ rapidly induced the phosphorylation of CREB, which was significantly suppressed by pretreatment of PKA inhibitor, but not by MAPK inhibitors. It also time-dependently increased the phosphorylation of MAPK, which was proven as ERKs, whereas it did not affect the PI3K activity. Interestingly, KT5720, a specific inhibitor of PKA, markedly suppressed the phosphorylation of MAPK by N/OFQ in SH-SY5Y cells. Furthermore, BAPTA-AM, an intracellular chelator of Ca(2+), completely abolished the phosphorylation of CREB as well as MAPK in N/OFQ-treated SH-SY5Y cells. Taken together, these results suggest that N/OFQ independently induces the activation of CREB prior to MAPK phosphorylation, which was also modulated by PKA. Furthermore, Ca(2+)-related signaling implicates in the phosphorylation processes of CREB and MAPK simultaneously.  相似文献   

5.
6.
7.
Osteoclast formation is controlled by stromal cells/osteoblasts expressing macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), crucial for osteoclast progenitor cell proliferation, survival and differentiation, and osteoprotegerin (OPG) that inhibits the interaction between RANKL and its receptor RANK. Recent data have strongly indicated that the nervous system plays an important role in bone biology. In the present study, the effects of the neuropeptide vasoactive intestinal peptide (VIP), present in peptidergic skeletal nerve fibers, on the expression of RANKL, OPG, and M-CSF in osteoblasts and stromal cells have been investigated. VIP and pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), but not secretin, stimulated rankl mRNA expression in mouse calvarial osteoblasts. In contrast, VIP inhibited the mRNA expressions of opg and m-csf, effects shared by PACAP-38, but not by secretin. VIP did not affect rankl, opg, or m-csf mRNA expression in mouse bone marrow stromal cells (BMSCs). The effects by VIP on the mRNA expression of rankl, opg, and m-csf were all potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram. In addition, VIP robustly enhanced the phosphorylation of ERK and the stimulatory effect by VIP on rankl mRNA was inhibited by the MEK1/2 inhibitor PD98059. These observations demonstrate that activation of VPAC(2) receptors in osteoblasts enhances the RANKL/OPG ratio by mechanisms mediated by cyclic AMP and ERK pathways suggesting an important role for VIP in bone remodeling.  相似文献   

8.
9.
10.
11.
The 26S proteasome is a key component of the ubiquitin-proteasome system, a process responsible for the majority of cellular protein degradation. The function of the proteasomal ubiquitin receptor hRpn13, a component of the 26S proteasome, is not completely understood. To investigate the role of hRpn13 in the ubiquitin-proteasome system in osteoblasts, the effects of suppressing and overexpressing the hRpn13 gene on proliferation, differentiation, and function of human osteoblast-like MG63 cells were examined. After knockdown of hRpn13 by small interfering RNA, changes in osteoblast proliferation were evaluated by methyl-thiazolyl-tetrazolium assay. There was an increase in markers for osteoblast proliferation, specifically alkaline phosphatase activity, and elevated protein levels of osteocalcin, proliferating cell nuclear antigen (PCNA), and ubiquitin. Furthermore, hRpn13 knockdown also resulted in a decrease in the ratio between the gene expressions of RANKL and OPG, key players in the pathogenesis of bone diseases that influence the normal balance between bone formation and resorption. In contrast, overexpression of hRpn13 inhibited the proliferation of MG63 cells, and decreased alkaline phosphatase activity as well as protein levels of osteocalcin, PCNA, and ubiquitin while the ratio of RANKL to OPG expression increased. To confirm the function of hRpn13 in the ubiquitin-proteasome pathway, osteoblast proliferation enhancement and ubiquitin accumulation after hRpn2 knockdown was assessed. The results suggest that overexpression of hRpn13 negatively influences proliferation and osteogenic differentiation in MG63 cells. The evidence implies that hRpn13 modulates the influence of osteoblasts on osteoclasts by controlling the stability of regulatory proteins in osteoblasts. In summary, overexpression of hRpn13 promoted the activity of the ubiquitin-proteasome system.  相似文献   

12.
13.
Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT‐5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA‐MB‐231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3. Interestingly, intracellular cAMP elevation upon forskolin pretreatment completely abrogated both ERK1/2 and STAT3 phosphorylation in response to leptin and was accompanied by a consistent CREB phosphorylation. Notably, leptin plus forskolin cotreatments resulted in a strong decrease of both PKA regulatory RIα and catalytic subunits protein levels. Importantly, pretreatment with the PKA inhibitor KT‐5720 blocked the forskolin‐induced CREB phosphorylation and prevented both the inhibition by forskolin of leptin‐induced ERK1/2 and STAT3 phosphorylation and the PKA subunits down‐regulation induced by the combination of leptin and forskolin. Altogether, our results indicate that leptin‐dependent signaling pathways are influenced by cAMP elevation and identify PKA as relevantly involved in the pharmacological antitumor interaction between leptin and cAMP elevating drugs in MDA‐MB‐231 cells. We propose a molecular model by which PKA confers its effects. Potential therapeutic applications by our data will be discussed. J. Cell. Physiol. 225: 801–809, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.  相似文献   

17.
The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of NF-κB (RANK) system plays an important role in the pathogenesis of metabolic bone diseases. This study is aimed to investigate effects and mechanisms of RANKL gene silencing on the function of human osteoblast-like MG63 cells by RNA interference using a lentivirus-based small hairpin RNA (vshRNA) delivery system. After RANKL-specific vshRNAs were designed, constructed and transfected into MG63 cells, changes in the expression levels of RANKL mRNA and protein were determined by Western blot and RT-PCR, respectively; changes in cell activity and cell cycle distribution were examined by thiazolyl blue tetrazolium bromide assay and flow cytometry. The expression levels of RANKL mRNA and protein in MG63 cells were reduced by transferring RANKL-specific vshRNAs. Compared to cells infected with negative control virus, the proliferation of cells infected with the recombinant virus was more likely to be inhibited. Furthermore, the cell cycle of MG63 was altered, with the number of G1 phase cells decreasing significantly (P < 0.05). RANKL-specific vshRNAs can significantly inhibit the expression of the target gene in MG63 cells. RANKL gene silencing can inhibit the proliferation and alter the cell cycle of MG63 cells. Our findings suggest that RANKL might play an important role in the regulation of growth and cell cycle of MG63 cells.  相似文献   

18.
19.
BAX Inhibitor-1 (BI-1), a transmembrane protein on the endoplasmic reticulum, has been studied previously in various physio/pathological conditions, but not in bone cells. In this study, using the MG63 osteoblast cell line and osteoblasts differentiated from stem cells, the role of BI-1 was studied. First, expression of BI-1 was confirmed in osteoblasts, as well as osteoclasts, in mouse tibiae bone immunohistochemistry. For evaluation of a recently published property of BI-1, an acidic pH-dependent Ca2? channel-like effect in osteoblasts, acidic pH-associated cell death, and pro-inflammatory cytokine release were examined. In MG63 osteoblasts, acidic pH induced a pH-dependent increase in cell death and ER stress, as determined by elevated expression of GRP78, CHOP, phospho-eIF2α, IRE-1α, spliced XBP-1, and phospho-JNK. In osteoblasts, mitochondrial Ca2? also showed a strong pH-dependent increase. BI-1 knock-down using siRNA protected cells against acidic pH, regulating mitochondrial Ca2? accumulation, possibly via the acidic pH-dependent Ca2? channel-like effect of BI-1. BI-1 knock-down also resulted in inhibition of acidic pH-induced release of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. In addition, bone marrow stem cells were differentiated into human osteoblasts, which showed increased expression of BI-1 mRNA and protein. In differentiated primary human osteoblasts, acidic pH-associated cell death, mitochondrial Ca2? accumulation, and pro-inflammatory cytokine release were more significant than in non-differentiated stem cells. In summary, endogenous expression of BI-1 is associated with acidic pH-induced Ca2? release, cell death, and pro-inflammatory cytokine release in human osteoblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号