首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.  相似文献   

2.
A number of findings have suggested the involvement of protein phosphorylation in the regulation of the epithelial Na+ channel (ENaC). A recent study has demonstrated that the C tails of the beta and gamma subunits of ENaC are subject to phosphorylation by at least three protein kinases [Shi, H., Asher, C., Chigaev, A., Yung, Y., Reuveny, E., Seger, R. & Garty, H. (2002) J. Biol. Chem. 277, 13539-13547]. One of them was identified as ERK which phosphorylates betaT613 and gammaT623 and affects the channel interaction with Nedd4. The current study identifies a second protein kinase as casein kinase 2 (CK2), or CK-2-like kinase. It phosphorylates betaS631, a well-conserved serine on the beta subunit. Such phosphorylation is observed both in vitro using glutathione-S-transferase-ENaC fusion proteins and in vivo in ENaC-expressing Xenopus oocytes. The gamma subunit is weakly phosphorylated by this protein kinase on another residue (gammaT599), and the C tail of alpha is not significantly phosphorylated by this kinase. Thus, CK2 may be involved in the regulation of the epithelial Na+ channel.  相似文献   

3.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPXY motif that is believed to be important for interaction with the WW domains of the ubiquitin-protein ligases, Nedd4 and Nedd4-2. Disruption of this interaction, as in Liddle's syndrome where mutations delete or alter the PPXY motif of either the beta or gamma subunits, has been shown to result in increased ENaC activity and arterial hypertension. Here we present evidence that N4WBP5A, a novel Nedd4/Nedd4-2-binding protein, is a potential regulator of ENaC. In Xenopus laevis oocytes N4WBP5A increases surface expression of ENaC by reducing the rate of ENaC retrieval. We further demonstrate that N4WBP5A prevents sodium feedback inhibition of ENaC possibly by interfering with the xNedd4-2-mediated regulation of ENaC. As N4WBP5A binds Nedd4/Nedd4-2 via PPXY motif/WW domain interactions and appears to be associated with specific intracellular vesicles, we propose that N4WBP5A functions by regulating Nedd4/Nedd4-2 availability and trafficking. Because N4WBP5A is highly expressed in native renal collecting duct and other tissues that express ENaC, it is a likely candidate to modulate ENaC function in vivo.  相似文献   

4.
The mechanisms involved in the regulation of the epithelial sodium channel (ENaC) via the cAMP pathway are not yet completely understood. The aim of the present study was to investigate cAMP-mediated ENaC regulation in Xenopus laevis oocytes heterologously expressing the three subunits (alphabetagamma) of rat ENaC and to determine the ENaC regions important for mediating the stimulatory effect of cAMP. In oocytes treated for about 24 h with 1 mm 3-isobutyl-1-methylxanthine (IBMX) and 1 microm forskolin (FSK) so as to increase intracellular cAMP, the amiloride-sensitive whole cell current (DeltaI(Ami)) was on average 10-fold larger than DeltaI(Ami) in matched control oocytes. This effect on DeltaI(Ami) was paralleled by an increase in ENaC surface expression caused by a reduced rate of ENaC retrieval. In addition, IBMX/FSK also enhanced ENaC open probability from about 0.2 to 0.5. The stimulatory effect of IBMX/FSK was dependent on the presence of intact PY motifs in the C termini of the channel. Mutagenesis of putative protein kinase A and CK-2 consensus motifs in the cytosolic domains of the channel did not reveal critical sites involved in mediating the stimulatory effect of IBMX/FSK. In contrast, site-directed mutagenesis of two putative ERK-consensus motifs (T613A in betaENaC and T623A in gammaENaC) largely reduced the stimulatory effect of IBMX/FSK. Phosphorylation of these ERK sites has previously been reported to enhance the interaction of ENaC and Nedd4 (Shi, H., Asher, C., Chigaev, A., Yung, Y., Reuveny, E., Seger, R., and Garty, H. (2002) J. Biol. Chem. 277, 13539-13547). Using co-expression experiments we demonstrated that mutating the two ERK sites attenuates the inhibitory effect of Nedd4-2 on ENaC currents. We conclude that an increase in intracellular cAMP favors the dephosphorylation of the two ERK sites, which reduces channel retrieval and increases P(O) by modulating ENaC/Nedd4 interaction. This defines a novel regulatory pathway likely to be relevant for cAMP-induced stimulation of ENaC in vivo.  相似文献   

5.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPxY, motif which is believed to be important for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome, where mutations delete or alter the PPxY motif of either the beta or gamma subunits, has been proposed to result in increased ENaC activity. Here we present evidence that KIAA0439 protein, a close relative of Nedd4, is also a potential regulator of ENaC. We demonstrate that KIAA0439 WW domains bind all three ENaC subunits. We show that a recombinant KIAA0439 WW domain protein acts as a dominant negative mutant that can interfere with the Na(+)-dependent feedback inhibition of ENaC in whole-cell patch clamp experiments. We propose that KIAA0439 and Nedd4 proteins either play a redundant role in ENaC regulation or function in a tissue- and/or signal-specific manner to down-regulate ENaC.  相似文献   

6.
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPxY motif which is necessary for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome where mutations delete or alter the PY motif of either the beta or gamma subunits, results in increased ENaC activity. We have recently shown using the whole-cell patch clamp technique that Nedd4 mediates the ubiquitin-dependent down-regulation of Na+ channel activity in response to increased intracellular Na+. In this paper, we demonstrate that WW domains 2 and 3 bind alpha-, beta-, and gamma-ENaC with varying degrees of affinity, whereas WW domain 1 does not bind to any of the subunits. We further show using whole-cell patch clamp techniques that Nedd4-mediated down-regulation of ENaC in mouse mandibular duct cells involves binding of the WW domains of Nedd4 to three distinct sites. We propose that Nedd4-mediated down-regulation of Na+ channels involves the binding of WW domains 2 and 3 to the Na+ channel and of WW domain 1 to an unknown associated protein.  相似文献   

7.
Epithelial sodium channels (ENaCs) are assembled in the endoplasmic reticulum (ER) from alpha, beta, and gamma subunits, each with two transmembrane domains, a large extracellular loop, and cytoplasmic amino and carboxyl termini. ENaC maturation involves transit through the Golgi complex where Asn-linked glycans are processed to complex type and the channel is activated by furin-dependent cleavage of the alpha and gamma subunits. To identify signals in ENaC for ER retention/retrieval or ER exit/release, chimera were prepared with the interleukin alpha subunit (Tac) and each of the three cytoplasmic carboxyl termini of mouse ENaC (Tac-Ct) or with gamma-glutamyltranspeptidase and each of the three cytoplasmic amino termini (Nt-GGT). By monitoring acquisition of endoglycosidase H resistance after metabolic labeling, we found no evidence of ER retention of any chimera when compared with control Tac or GGT, but we did observe enhanced exit of Tac-alphaCt when compared with Tac. ER exit of ENaC was assayed after metabolic labeling by following the appearance of cleaved alpha as cleaved alpha subunit, but not non-cleaved alpha, is endoglycosidase H-resistant. Interestingly ER exit of epitope-tagged and truncated alpha (alphaDelta624-699-V5) with full-length betagamma was similar to wild type alpha (+betagamma), whereas ER exit of ENaC lacking the entire cytoplasmic carboxyl tail of alpha (alphaDelta613-699-V5 +betagamma) was significantly reduced. Subsequent analysis of ER exit for ENaCs with mutations within the intervening sequence (613)HRFRSRYWSPG(623) within the context of the full-length alpha revealed that mutation alphaRSRYW(620) to AAAAA significantly reduced ER exit. These data indicate that ER exit of ENaC is regulated by a signal within the alpha subunit carboxyl cytoplasmic tail.  相似文献   

8.
CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.  相似文献   

9.
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na(+) channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 microM range.  相似文献   

10.
We have previously shown that IkappaB kinase-beta (IKKbeta) interacts with the epithelial Na+ channel (ENaC) beta-subunit and enhances ENaC activity by increasing its surface expression in Xenopus oocytes. Here, we show that the IKKbeta-ENaC interaction is physiologically relevant in mouse polarized kidney cortical collecting duct (mpkCCDc14) cells, as RNA interference-mediated knockdown of endogenous IKKbeta in these cells by approximately 50% resulted in a similar reduction in transepithelial ENaC-dependent equivalent short circuit current. Although IKKbeta binds to ENaC, there was no detectable phosphorylation of ENaC subunits by IKKbeta in vitro. Because IKKbeta stimulation of ENaC activity occurs through enhanced channel surface expression and the ubiquitin-protein ligase Nedd4-2 has emerged as a central locus for ENaC regulation at the plasma membrane, we tested the role of Nedd4-2 in this regulation. IKKbeta-dependent phosphorylation of Xenopus Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for regulation of Nedd4-2 and thus ENaC activity. 32P labeling studies utilizing wild-type or mutant forms of Xenopus Nedd4-2 demonstrated that Ser-444, a key SGK1 and protein kinase A-phosphorylated residue, is also an important IKKbeta phosphorylation target. ENaC stimulation by IKKbeta was preserved in oocytes expressing wild-type Nedd4-2 but blocked in oocytes expressing either a dominant-negative (C938S) or phospho-deficient (S444A) Nedd4-2 mutant, suggesting that Nedd4-2 function and phosphorylation by IKKbeta are required for IKKbeta regulation of ENaC. In summary, these results suggest a novel mode of ENaC regulation that occurs through IKKbeta-dependent Nedd4-2 phosphorylation at a recognized SGK1 and protein kinase A target site.  相似文献   

11.
The epithelial Na+ channel (ENaC), composed of three subunits (alpha beta gamma), plays a critical role in salt and fluid homeostasis. Abnormalities in channel opening and numbers have been linked to several genetic disorders, including cystic fibrosis, pseudohypoaldosteronism type I and Liddle syndrome. We have recently identified the ubiquitin-protein ligase Nedd4 as an interacting protein of ENaC. Here we show that ENaC is a short-lived protein (t1/2 approximately 1 h) that is ubiquitinated in vivo on the alpha and gamma (but not beta) subunits. Mutation of a cluster of Lys residues (to Arg) at the N-terminus of gamma ENaC leads to both inhibition of ubiquitination and increased channel activity, an effect augmented by N-terminal Lys to Arg mutations in alpha ENaC, but not in beta ENaC. This elevated channel activity is caused by an increase in the number of channels present at the plasma membrane; it represents increases in both cell-surface retention or recycling of ENaC and incorporation of new channels at the plasma membrane, as determined by Brefeldin A treatment. In addition, we find that the rapid turnover of the total pool of cellular ENaC is attenuated by inhibitors of both the proteasome and the lysosomal/endosomal degradation systems, and propose that whereas the unassembled subunits are degraded by the proteasome, the assembled alpha beta gamma ENaC complex is targeted for lysosomal degradation. Our results suggest that ENaC function is regulated by ubiquitination, and propose a paradigm for ubiquitination-mediated regulation of ion channels.  相似文献   

12.
Cell surface expression of the epithelial Na(+) channel ENaC is regulated by the ubiquitin ligase Nedd4. Binding of the WW domains of Nedd4 to the PY region in the carboxy tails of beta and gammaENaC, results in channel ubiquitination and degradation. Kinetic analysis of these interactions has been done using surface plasmon resonance. Synthetic peptides corresponding to the PY regions of beta and gammaENaC were immobilized on a sensor chip and "real-time" kinetics of their binding to recombinant WW proteins was determined. Specificity of the interactions was established by competition experiment, as well as by monitoring effects of a point mutation known to impair Nedd4/ENaC binding. These data provides the first determination of association, dissociation and equilibrium constants for the interactions between WW2 and beta or gammaENaC.  相似文献   

13.
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na+ channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 μM range.  相似文献   

14.
Aldosterone-induced serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) contributes to the regulation of the epithelial sodium channel (ENaC), the activity of which is critical for long term blood pressure control. Aldosterone-induced SGK1 is thought to enhance ENaC surface expression by phosphorylating Nedd4-2 and thereby preventing ENaC retrieval and degradation. In outside-out membrane patches of Xenopus laevis oocytes heterologously expressing ENaC, amiloride-sensitive ENaC currents were enhanced by phosphatase inhibitors and were dependent on cytosolic Mg(2+). This indicates that a kinase is involved in channel regulation. Indeed, recombinant constitutively active SGK1, included in the pipette solution, caused a sustained 2- to 3-fold increase of ENaC currents. Deletion of the C terminus of alphaENaC largely reduced the stimulatory effect of SGK1, whereas stimulation by SGK1 did not require the presence of the C termini of the beta- or gamma-subunits. Replacing the serine residue Ser(621) of the SGK1 consensus motif in the C terminus of the alpha-subunit by an alanine specifically abolished the stimulatory effect of SGK. Our findings indicate that SGK1 can stimulate ENaC activity independently of an inhibition of Nedd4-2-mediated channel retrieval. This defines a novel regulatory pathway likely to be relevant for aldosterone-induced stimulation of ENaC in vivo.  相似文献   

15.
Amiloride-sensitive epithelial Na(+) channels (ENaC) are responsible for trans-epithelial Na(+) transport in the kidney, lung, and colon. The channel consists of three subunits (alpha, beta, gamma) each containing a proline rich region (PPXY) in their carboxyl-terminal end. Mutations in this PPXY domain cause Liddle's syndrome, an autosomal dominant, salt-sensitive hypertension, by preventing the channel's interactions with the ubiquitin ligase Neural precursor cell-expressed developmentally down-regulated protein (Nedd4). It is postulated that this results in defective endocytosis and lysosomal degradation of ENaC leading to an increase in ENaC activity. To show the pathway that degrades ENaC in epithelial cells that express functioning ENaC channels, we used inhibitors of the proteosome and measured sodium channel activity. We found that the inhibitor, MG-132, increases amiloride-sensitive trans-epithelial current in Xenopus distal nephron A6 cells. There also is an increase of total cellular as well as membrane-associated ENaC subunit molecules by Western blotting. MG-132-treated cells also have increased channel density in patch clamp experiments. Inhibitors of lysosomal function did not reproduce these findings. Our results suggest that in native renal cells the proteosomal pathway is an important regulator of ENaC function.  相似文献   

16.
17.
The epithelial Na+ channel (ENaC) is a heteromeric protein complex playing a fundamental role in Na+ homeostasis and blood pressure regulation. Specific mutations inactivating PY motifs in ENaC C termini cause Liddle's syndrome, an inherited form of hypertension. Previously we showed that these PY motifs serve as binding sites for the E3 enzyme Nedd4-2, implying ubiquitination as a regulatory mechanism of ENaC. Ubiquitination involves the sequential action of E1, E2, and E3 enzymes. Here we identify the E2 enzyme UBE2E3, which acts in concert with Nedd4-2, and show by coimmunoprecipitation that UBE2E3 and Nedd4-2 interact together. In Xenopus laevis oocytes, UBE2E3 reduces ENaC activity marginally, consistent with Nedd4-2 being the rate-limiting factor in this process, whereas a catalytically inactive mutant of UBE2E3 (UBE2E3-CS) causes elevated ENaC activity by increasing cell surface expression. No additive effect is observed when UBE2E3-CS is coexpressed with an inactive Nedd4-2 mutant, and the stimulatory role of UBE2E3-CS depends on the integrity of the PY motifs (Nedd4-2 binding sites) and the ubiquitination sites on ENaC. In renal mpkCCD(cl4) cells, displaying ENaC-dependent transepithelial Na+ transport, Nedd4-2 and UBE2E3 can be coimmunoprecipitated and overexpression of UBE2E3 affects Na+ transport, corroborating the concept of a concerted action of UBE2E3 and Nedd4-2 in ENaC regulation.  相似文献   

18.
Liddle's syndrome is a form of inherited hypertension linked to mutations in the genes encoding the epithelial Na+ channel (ENaC). These mutations alter or delete PY motifs involved in protein-protein interactions with a ubiquitin-protein ligase, Nedd4. Here we show that Na+ transporting cells, derived from mouse cortical collecting duct, express two Nedd4 proteins with different structural organization and characteristics of ENaC regulation: 1) the classical Nedd4 (herein referred to as Nedd4-1) containing one amino-terminal C2, three WW, and one HECT-ubiquitin protein ligase domain and 2) a novel Nedd4 protein (Nedd4-2), homologous to Xenopus Nedd4 and comprising four WW, one HECT, yet lacking a C2 domain. Nedd4-2, but not Nedd4-1, inhibits ENaC activity when coexpressed in Xenopus oocytes and this property correlates with the ability to bind to ENaC, as only Nedd4-2 coimmunoprecipitates with ENaC. Furthermore, this interaction depends on the presence of at least one PY motif in the ENaC complex and on WW domains 3 and 4 in Nedd4-2. Thus, these results suggest that the novel suppressor protein Nedd4-2 is the regulator of ENaC and hence a potential susceptibility gene for arterial hypertension.  相似文献   

19.
We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the beta-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the beta-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.  相似文献   

20.
The amiloride-sensitive epithelial Na(+) channels (ENaC) in the intralobular duct cells of mouse mandibular glands are inhibited by the ubiquitin-protein ligase, Nedd4, which is activated by increased intracellular Na(+). In this study we have used whole-cell patch clamp methods in mouse mandibular duct cells to investigate the role of the C termini of the alpha-, beta-, and gamma-subunits of ENaC in mediating this inhibition. We found that peptides corresponding to the C termini of the beta- and gamma-subunits, but not the alpha-subunit, inhibited the activity of the Na(+) channels. This mechanism did not involve Nedd4 and probably resulted from the exogenous C termini interfering competitively with the protein-protein interactions that keep the channels active. In the case of the C terminus of mouse beta-ENaC, the interacting motif included betaSer(631), betaAsp(632), and betaSer(633). In the C terminus of mouse gamma-ENaC, it included gammaSer(640). Once these motifs were deleted, we were able to use the C termini of beta- and gamma-ENaC to prevent Nedd4-mediated down-regulation of Na(+) channel activity. The C terminus of the alpha-subunit, on the contrary, did not prevent Nedd4-mediated inhibition of the Na(+) channels. We conclude that mouse Nedd4 interacts with the beta- and gamma-subunits of ENaC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号