首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pyridoxal 5'-phosphate (PLP), a lysine-specific reagent, has been used to modify G-actin. At pH 7.5, PLP reacted with 1.7-2 lysines on G-actin. Limited proteolytic digestion experiments indicated that, in agreement with previous works, essentially lysine-61 was modified in a 1:1 fashion by PLP, other lysines being much less reactive. A PLP-derivatized affinity label of ATP binding sites, AMPPLP, reacted with two additional lysines that do not appear to be located in the ATP site on G-actin. PLP-G-actin did not polymerize spontaneously up to 30 microM; however, it retained other essential native properties of G-actin. PLP-actin bound to the barbed ends of actin filaments with an equilibrium dissociation constant of 4 microM and prevented dilution-induced depolymerization like a capping protein. PLP-actin copolymerized with unmodified actin. The stability of F-actin copolymers decreased with the fraction of PLP-actin incorporated, consistent with a model within which the actin-PLP-actin interactions in the copolymer are 50-fold weaker, and PLP-actin-PLP-actin interactions are 200-fold weaker than regular actin-actin interactions. PLP-actin bound DNase I with an equilibrium association constant of 2 nM-1, i.e., 10-fold lower than that of unmodified actin. PLP modification did not affect the binding of G-actin to myosin subfragment 1. However, polymerization of PLP-actin by myosin subfragment 1 was not observed in low ionic strength buffers, whereas PLP-F-actin-S1 filaments, in which the stoichiometry PLP-actin:S1 is 1:1, were formed with an apparent critical concentration of 4.5 microM in the presence of 0.1 M KCl.  相似文献   

2.
Using polarized microfluorometry techniques, a study was made on the orientation and mobility of fluorescent probes 1,5-IAEDANS and rhomadin-phalloidin, located in various parts of actin, muscle fibers free of myosin, tropomyosin and troponin (ghost fibres) being used. It was found that the binding of a myosin subfragment 1 (S1) to actin induced changes in polarized fluorescence of the fibers. The analysis of these data showed that the formation of actin-S1 and actin-S1-ADP complexes in a muscle fiber resulted in a decrease in the angle between the thin filaments and the emission dipole of phalloidin-rhodamine, as well as in an increase of the mobility of this dye. In the experiments with the 1,5-IAEDANS label the angle of emission dipole increased, while the mobility of the label decreased. These changes were smaller in the presence of Mg-ADP than in its absence. It is assumed that the changes in actin monomer structure occur when a myosin head interacts with actin. These changes are expressed as those in orientation and mobility of large and small domains of actin in thin filaments. The domain orientation in actomyosin complex changes, influenced by Mg-ADP. The data obtained allow to propose the involvement of interdomain motions of some parts of actin monomer in the mechanisms of muscle contraction.  相似文献   

3.
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.  相似文献   

4.
The initial rates of tryptic digestion at the 50/20-kDa junction in myosin and myosin subfragment 1 were determined for the free proteins and their complexes with actin in the presence and absence of MgATP. The proteolytic reactions were carried out at 24 degrees C and under ionic strength conditions (mu) adjusted to 35, 60, and 130 mM. The percentages of myosin heads and myosin subfragment 1 bound to actin in the presence of MgATP were calculated from the rates of proteolysis for each set of digestion experiments. In all cases, the myosin heads in the synthetic filaments showed greater binding to actin than myosin subfragment 1. This binding difference was most prominent (3-fold) at mu = 130 mM. The binding of heavy meromyosin (HMM) to actin in the presence of MgADP was measured at 4 degrees C by ultracentrifugation and the proteolytic rates methods. Ultracentrifugation experiments determined the fraction of HMM molecules bound to actin in the presence of MgADP, whereas the proteolytic measurements yielded the information on the fraction of HMM heads bound to actin. Taken together, these measurements show that a significant fraction of HMM is bound to actin with only one head in the presence of MgADP under ionic conditions of 180 and 280 mM.  相似文献   

5.
The Mg2+-ATPase activity of myosin and its subfragment 1 (ATP phosphohydrolase, EC 3.6.1.3) always followed normal Michaelis-Menten kinetics for ATP concentrations less than 10 microM. The average Km values at pH 7.4 and 25 degrees C are 0.33 +/- 0.04 microM for myosin and 0.43 +/- 0.11 microM for subfragment 1. At low salt concentration myosin yields a second hyperbolic increase in Mg2+-ATPase activity as the ATP rises from 10.2 microM to 153 microM: V doubles with a Km of 11 +/- 5 microM. This second low-salt-dependent increase in Mg2+-ATPase activity occurred between pH 6.8 and pH 8.7. It was not affected by the presence of 0.10 M EGTA to remove Ca2+ contamination. Solubilization of the catalytic sites by assaying myosin for ATPase activity in the presence of 0.60 M NaCl or by conversion of myosin to subfragment 1 eliminated the secondary hyperbolic increase. Subfragment 1 has a significantly different pH-activity curve from that of myosin. Subfragment 1 has an activity peak at pH 6.0, a rising activity as the pH goes from 8.7 to 9.8, and a deep activity valley between pH 6.8 and pH 8.4. Myosin has a very shallow trough of activity at pH 6.8 to 8.4, and in 1.0 mM ATP its activity drops as the pH decreases from 6.8 to 6.0. NaCl is a noncompetitive inhibitor of the Mg2+-ATPase activity of myosin and subfragment 1. Myosin has a greater affinity for NaCl (Ki = 0.101 +/- 0.004 M) than does subfragment 1 (Ki = 0.194 +/- 0.009 M).  相似文献   

6.
C Weigt  A Wegner  M H Koch 《Biochemistry》1991,30(44):10700-10707
The rate of assembly of tropomyosin with actin filaments was measured by stopped-flow experiments. Binding of tropomyosin to actin filaments was followed by the change of the fluorescence intensity of a (dimethylamino)naphthalene label covalently linked to tropomyosin and by synchrotron radiation X-ray solution scattering. Under the experimental conditions (2 mM MgCl2, 100 mM KCl, pH 7.5, 25 degrees C) and at the protein concentrations used (2.5-24 microM actin, 0.2-3.4 microM tropomyosin) the half-life time of assembly of tropomyosin with actin filaments was found to be less than 1 s. The results were analyzed quantitatively by a model in which tropomyosin initially binds to isolated sites. Further tropomyosin molecules bind contiguously to bound tropomyosin along the actin filaments. Good agreement between the experimental and theoretical time course of assembly was obtained by assuming a fast preequilibrium between free and isolatedly bound tropomyosin.  相似文献   

7.
The effect of Ca2+ on the interaction of bovine cardiac myosin subfragment 1 (S-1) with actin regulated by cardiac troponin-tropomyosin was evaluated. The ratios of actin to troponin and to tropomyosin were adjusted to optimize the Ca2+-dependent regulation of the steady-state actin-activated magnesium adenosinetriphosphatase (MgATPase) rate of myosin S-1. At 25 degrees C, pH 6.9, 16 mM ionic strength, the extrapolated values for maximal adenosine 5'-triphosphate (ATP) turnover rate at saturating actin, Vmax, were 6.5 s-1 in the presence of Ca2+ and 0.24 s-1 in the absence of Ca2+. In contrast to this 27-fold regulation of ATP hydrolysis, there was negligible Ca2+-dependent regulation of cardiac myosin S-1 binding to actin. In the presence of ATP, the dissociation constant of regulated actin and cardiac myosin S-1 was 32 microM in the presence of Ca2+ and 40 microM in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. These dissociation constants are indistinguishable from the concentrations of actin needed to reach half-saturation of the myosin S-1 MgATPase rates, 37 microM actin in the presence of Ca2+ and 53 microM in its absence. Although there may be Ca2+-dependent regulation of cross-bridge binding in the intact heart, the present biochemical studies suggest that cardiac regulation critically involves other parts of the cross-bridge cycle, evidenced here by almost complete Ca2+-mediated control of the myosin S-1 MgATPase rate even when the myosin S-1 is actin-bound.  相似文献   

8.
Nuclear actin and transport of RNA   总被引:3,自引:0,他引:3  
The role of nuclear actin filaments in the RNA transport was investigated. Mouse lymphoma cells, L5178Y, were labeled for 20 min with 3H-uridine, and the isolated nuclei were incubated in a medium consisting of 0.25 M sucrose, 10 mM Tris-HCl (pH 7.5), 2 mM CaCl2, 1 mM ATP and 1mM PMSF. Release of the rapidly labeled RNA from the nuclei was temperature-dependent and was stimulated by ATP. Phalloidin, an inhibitor of actin filament depolymerization, had no effect on the system at 10 or 100 micrograms/ml. Therefore, actin filament depolymerization may not be involved in the transport of RNA.  相似文献   

9.
Rate of binding of tropomyosin to actin filaments   总被引:1,自引:0,他引:1  
A Wegner  K Ruhnau 《Biochemistry》1988,27(18):6994-7000
The decrease of the rate of actin polymerization by tropomyosin molecules which bind near the ends of actin filaments was analyzed in terms of the rate of binding of tropomyosin to actin filaments. Monomeric actin was polymerized onto actin filaments in the presence of various concentrations of tropomyosin. At high concentrations of monomeric actin (c1) and low tropomyosin concentrations (ct) (c1/ct greater than 10), actin polymerization was not retarded by tropomyosin because actin polymerization was faster than binding of tropomyosin to actin filaments. At low actin concentrations and high tropomyosin concentrations (c1/ct less than 5), the rate of elongation of actin filaments was decreased because actin polymerization was slower than binding of tropomyosin at the ends of actin filaments. The results were quantitatively analyzed by a model in which it was assumed that actin-bound tropomyosin molecules which extend beyond the ends of actin filaments retard association of actin monomers with filament ends. Under the experimental conditions (100 mM KCl, 1 mM MgCl2, pH 7.5, 25 degrees C), the rate constant for binding of tropomyosin to actin filaments turned out to be about 2.5 X 10(6) to 4 X 10(6) M-1 S-1.  相似文献   

10.
Ca2(+)-regulated native thin filaments were extracted from sheep aorta smooth muscle. The caldesmon content determined by quantitative gel electrophoresis was 0.06 caldesmon molecule/actin monomer (1 caldesmon molecule per 16.3 actin monomers). Dissociation of caldesmon and tropomyosin from the thin filament and the depolymerization of actin was measured by sedimenting diluted thin filaments. Actin critical concentration was 0.05 microM at 10.1 and 0.13 at 10.05 compared with 0.5 microM for pure F-actin. Tropomyosin was tightly bound, with half-maximal dissociation at less than 0.3 microM thin filaments (actin monomer) under all conditions. Caldesmon dissociation was independent of tropomyosin and not co-operative. The concentration of thin filaments where 50% of the caldesmon was dissociated (CD50) ranged from 0.2 microM (actin monomer) at 10.03 to 8 microM at 10.16 in a 5 mM-MgCl2, pH 7.1, buffer. Mg2+, 25 mM at constant I, increased CD50 4-fold. CD50 was 4-fold greater at 10(-4) M-Ca2+ than at 10(-9) M-Ca2+. Aorta heavy meromyosin (HMM).ADP.Pi complex (2.5 microM excess over thin filaments) strongly antagonized caldesmon dissociation, but skeletal-muscle HMM.ADP.Pi did not. The behaviour of caldesmon in native thin filaments was indistinguishable from caldesmon in reconstituted synthetic thin filaments. The variability of Ca2(+)-sensitivity with conditions observed in thin filament preparations was shown to be related to dissociation of regulatory caldesmon from the thin filament.  相似文献   

11.
Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP- dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin-bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 micron/s, depending on the myosin preparation. This velocity is independent of myosin concentration on the bead surface for concentrations above a critical value (approximately 20 micrograms myosin/2.5 X 10(9) beads of 1 micron in diameter). Movement is optimal between pH 6.8 and 7.5, at KCl concentrations less than 70 mM, at ATP concentrations greater than 0.1 mM, and at Mg2+ concentrations between 2 and 6 mM. From the temperature dependence of bead velocity, we calculate activation energies of 90 kJ/mol below 22 degrees C and 40 kJ/mol above 22 degrees C. Different myosin species move at their own characteristic velocities, and these velocities are proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible method for quantitating the ATP- dependent movement of myosin molecules on actin.  相似文献   

12.
Adami R  Cintio O  Trombetta G  Choquet D  Grazi E 《Biochemistry》2002,41(18):5907-5912
The effects of coupling with tetramethylrhodamine-5-iodoacetamide and of the decoration with tropomyosin and with myosin subfragment 1 on the elastic properties of F-actin filament are investigated. At 22 degrees C, in 15 mM orthophosphate and 3 mM MgCl2, tetramethylrhodamine F-actin displays a yield strength of 3.69 +/- 0.213 pN and an elastic modulus by stretching of 0.91 MPa. Decoration with tropomyosin increases the yield strength of tetramethylrhodamine F-actin to 10.51 +/- 0.24 pN and the elastic modulus by stretching to 23-75 MPa. Mixtures of myosin subfragment 1 and tetramethylrhodamine F-actin at the 0.2:1, 0.4:1, 0.6:1, 0.8:1, and 1:1 molar ratios are also studied. Both yield strength and the elastic modulus by stretching are found to increase progressively with the ratio. At the 1:1 molar ratio, the yield strength is 15.81 +/- 0.26 pN and the elastic modulus by stretching is 13.45 to 40 MPa. Decoration of tetramethylrhodamine F-actin with both tropomyosin and myosin subfragment 1, at the 1:1 molar ratio with the actin monomer, produces filaments with an yield strength of 22.3 +/- 0.48 pN.  相似文献   

13.
A rat pheochromocytoma (PC12) cell line was used to examine the possibility that 5-hydroxytryptamine (serotonin), 3,4-dihydroxyphenylethylamine (dopamine), or noradrenaline may be associated with cytoplasmic actin, as was suggested by previous in vitro binding studies on an actin-like protein from rat brain synaptosomes. When PC12 cells were incubated with [3H]serotonin. [3H]dopamine, or [3H]noradrenaline for 30 min at 37 degrees C, approximately 2-4% of the radioactivity present in the cells was found to be associated with a high-molecular-weight (actin-like) component in supernatant fractions. Evidence relating this monoamine binding component to actin filaments includes: (a) its strong absorption by myosin filaments at low ionic strength: (b) a decrease in its affinity for myosin in the presence of 1 mM ATP, which lowers the affinity of authentic actin for myosin: (c) displacement of bound [3H]serotonin from it by DNase I, which binds strongly to actin and which inhibits [3H]serotonin binding to actin in vitro; (d) an increase in its binding of each monoamine (by 25-40%) after PC12 cells were preincubated with 10 microM cytochalasin B (a drug that induces depolymerization of F-actin). These findings suggest that serotonin, dopamine, or noradrenaline may associate with actin filaments in vivo.  相似文献   

14.
The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.  相似文献   

15.
Actin-activation of unphosphorylated gizzard myosin   总被引:2,自引:0,他引:2  
The effect of light chain phosphorylation on the actin-activated ATPase activity and filament stability of gizzard smooth muscle myosin was examined under a variety of conditions. When unphosphorylated and phosphorylated gizzard myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, and when they were filamentous, their MgATPase activities could be stimulated by actin. At pH 7.0, the unphosphorylated myosin in the presence of ATP required 2-3 times as much Mg2+ for filament formation as did the phosphorylated myosin. The amount of stimulation of the unphosphorylated myosin filaments depended upon pH, temperature, and the presence of tropomyosin. At pH 7.0 and 37 degrees C and at pH 6.8 and 25 degrees C, the MgATPase activity of filamentous, unphosphorylated, gizzard myosin was stimulated 10-fold by actin complexed with gizzard tropomyosin. These tropomyosin-actin-activated ATPase activities were 40% of those of the phosphorylated myosin. Under other conditions, pH 7.5 and 37 degrees C and pH 7.0 and 25 degrees C, even though the unphosphorylated myosin was mostly filamentous, its MgATPase activity was stimulated only 4-fold by tropomyosin-actin. Thus, both unphosphorylated and phosphorylated gizzard myosin filaments appear to be active, but the cycling rate of the unphosphorylated myosin is less than that of the phosphorylated myosin. Active unphosphorylated myosin may help explain the ability of smooth muscles to maintain tension in the absence of myosin light chain phosphorylation.  相似文献   

16.
Caldesmon is a component of smooth muscle thin filaments that inhibits the actomyosin ATPase via its interaction with actin-tropomyosin. We have performed a comprehensive transient kinetic characterization of the actomyosin ATPase in the presence of smooth muscle caldesmon and tropomyosin. At physiological ratios of caldesmon to actin (1 caldesmon/7 actin monomers) actomyosin ATPase is inhibited by about 75%. Inhibitory caldesmon concentrations had little effect upon the rate of S1 binding to actin, actin-S1 dissociation by ATP, and dissociation of ADP from actin-S1 x ADP; however the rate of phosphate release from the actin-S1 x ADP x P(i) complex was decreased by more than 80%. In addition the transient of phosphate release displayed a lag of up to 200 ms. The presence of a lag phase indicates that a step on the pathway prior to phosphate release has become rate-limiting. Premixing the actin-tropomyosin filaments with myosin heads resulted in the disappearance of the lag phase. We conclude that caldesmon inhibition of the rate of phosphate release is caused by the thin filament being switched by caldesmon to an inactive state. The active and inactive states correspond to the open and closed states observed in skeletal muscle thin filaments with no evidence for the existence of a third, blocked state. Taken together these data suggest that at physiological concentrations, caldesmon controls the isomerization of the weak binding complex to the strong binding complex, and this causes the inhibition of the rate of phosphate release. This inhibition is sufficient to account for the inhibition of the steady state actomyosin ATPase by caldesmon and tropomyosin.  相似文献   

17.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

18.
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437; Chalovich, J. M., and Eisenberg, E. (1984) Biophys. J. 45, 221a; Wagner, P. D., and Stone, D. B. (1983) Biochemistry 22, 1334-1342; and Wagner, P. D. (1984) Biochemistry 23, 5950-5956). Since the low ionic strengths used in the above studies do not represent the physiological ionic strength under which intact muscle exhibits Ca2+-dependent tension development, we investigated the possibility of whether a Ca2+-dependent regulated actin-HMM interaction could be observed at physiological ionic strength (mu = 134 mM, pH 7.4) and in the presence of ATP (at 23-24 degrees C). Direct binding of HMM to varied concentrations of regulated actin (87.7-221 microM free actin) was measured by sedimentation in an air-driven ultracentrifuge. Under the above conditions, we found that the regulated actin activation of HMM-Mg2+-ATPase was about 94% inhibited in the absence of Ca2+ although the association constant (Ka) is only moderately affected in the presence of Ca2+. These results are similar to those obtained by Chalovich and Eisenberg (1982 and 1984) with subfragment 1 and HMM, respectively, at low ionic strength and support their suggestion that in solution tropomyosin-troponin may not act totally by physically blocking the formation of cross-bridges with actin, but instead may act to inhibit a kinetic step in the overall ATPase rate. Whether this holds true in more intact systems (e.g. myosin, thick filaments) remains to be determined. Our results also show a good correlation between levels of ATPase activation and HMM binding by unregulated actin and in regulated actin in the presence of Ca2+.  相似文献   

19.
Summary Actin filaments in the microridges on the surface of the fish oral mucosa taken from Cyprinus carpio were examined by electron microscopy after detergent extraction and decoration with myosin subfragment 1. After extraction with saponin, an irregular and densely packed meshwork of actin filaments was observed in the bases of the microridges, just lateral to the tight junctions with their fibrous undercoats. Actin filaments formed cores in the microridges and numerous linkages were seen between the filaments and the plasma membrane. Extraction with Triton X-100 and decoration with myosin subfragment 1 showed the ends of the actin filaments to be associated with the plasma membrane of the microridges, and in the bases of microridges the filament ends were anchored to intermediate filaments. Some actin filaments interconnected with the fibrous undercoats of the tight junctions. On the basis of these observations, the mechanism of the formation of microridges, including their pattern, is discussed.  相似文献   

20.
The interaction of actin with myosin was studied in the presence of ATP at low ionic strength by means of measurements of the actin-activated ATPase activity of myosin and superprecipitation of actomyosin. At high ATP concentrations the ATPase activities of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1) were activated by actin in the same extent. At low ATP concentrations the myosin ATPase activity was activated about 30-fold by actin, whereas those of HMM and S-1 were stimulated only several-fold. This high actin activation of myosin ATPase was coupled with the occurrence of superprecipitation. The activation of HMM or S-1 ATPase by actin shows a simple hyperbolic dependence on actin concentration, but the myosin ATPase was maximally activated by actin at a 2:1 molar ratio of actin to myosin, and a further increase in the actin concentration had no effect on the activation. These results suggest the presence of a unit for actin-myosin interaction, composed of two actin monomers and one myosin molecule in the filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号