首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic behavior of RecA-DNA helical filaments   总被引:1,自引:0,他引:1  
Escherichia coli RecA protein forms a right-handed helical filament with DNA molecules and has an ATP-dependent activity that exchanges homologous strands between single-stranded DNA (ssDNA) and duplex DNA. We show that the RecA-ssDNA filamentous complex is an elastic helical molecule whose length is controlled by the binding and release of nucleotide cofactors. RecA-ssDNA filaments were fluorescently labelled and attached to a glass surface inside a flow chamber. When the chamber solution was replaced by a buffer solution without nucleotide cofactors, the RecA-ssDNA filament rapidly contracted approximately 0.68-fold with partial filament dissociation. The contracted filament elongated up to 1.25-fold when a buffer solution containing ATPgammaS was injected, and elongated up to 1.17-fold when a buffer solution containing ATP or dATP was injected. This contraction-elongation behavior was able to be repeated by the successive injection of dATP and non-nucleotide buffers. We propose that this elastic motion couples to the elastic motion and/or the twisting rotation of DNA strands within the filament by adjusting their helical phases.  相似文献   

2.
We develop a mathematical model that describes key details of actin dynamics in protrusion associated with cell motility. The model is based on the dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as keratocytes. We consider a set of partial differential equations for diffusion and reactions of sequestered actin complexes, nucleation, and growth by polymerization of barbed ends of actin filaments, as well as capping and depolymerization of the filaments. The mechanical aspect of protrusion is based on an elastic polymerization ratchet mechanism. An output of the model is a relationship between the protrusion velocity and the number of filament barbed ends pushing the membrane. Significantly, this relationship has a local maximum: too many barbed ends deplete the available monomer pool, too few are insufficient to generate protrusive force, so motility is stalled at either extreme. Our results suggest that to achieve rapid motility, some tuning of parameters affecting actin dynamics must be operating in the cell.  相似文献   

3.
Dynamic images of isolated bacterial flagellar filaments undergoing cyclic transformations were recorded by dark-field light microscopy and an ultrasensitive video camera. Flagellar filaments derived from Salmonella SJ25 sometimes stick to a glass surface by short segments near one end. When such a filament, which is a left-handed helix, was subjected to a steady flow of a viscous solution of methylcellulose, its free portion was found to transform cyclically between left-handed (normal) and right-handed (curly or semi-coiled) helical forms. The transformations did not occur simultaneously throughout the whole length of a filament, but occurred at a transition point, which proceeded along the filament. Each transformation process consisted of three phases: initiation, growth and travel. The magnitudes of the mechanical forces, torque and tension, which were generated on a filament by the viscous flow, were obtained by quantitative hydrodynamic analyses. The torque was found responsible for initiating the transformation. The critical magnitude of torque required to induce the normal to semi-coiled transformation was ?11 × 10?19 N m and that for the reverse transformation from the semi-coiled to the normal form was 4 × 10?19 N m. Therefore, the filaments showed the characteristics of hysteresis during the cyclic transformation. New types of unstable right-handed helical forms (medium and large) were also induced by mechanical force.  相似文献   

4.
Cell motility driven by actin polymerization.   总被引:27,自引:5,他引:22       下载免费PDF全文
Certain kinds of cellular movements are apparently driven by actin polymerization. Examples include the lamellipodia of spreading and migrating embryonic cells, and the bacterium Listeria monocytogenes, that propels itself through its host's cytoplasm by constructing behind it a polymerized tail of cross-linked actin filaments. Peskin et al. (1993) formulated a model to explain how a polymerizing filament could rectify the Brownian motion of an object so as to produce unidirectional force (Peskin, C., G. Odell, and G. Oster. 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316-324). Their "Brownian ratchet" model assumed that the filament was stiff and that thermal fluctuations affected only the "load," i.e., the object being pushed. However, under many conditions of biological interest, the thermal fluctuations of the load are insufficient to produce the observed motions. Here we shall show that the thermal motions of the polymerizing filaments can produce a directed force. This "elastic Brownian ratchet" can explain quantitatively the propulsion of Listeria and the protrusive mechanics of lamellipodia. The model also explains how the polymerization process nucleates the orthogonal structure of the actin network in lamellipodia.  相似文献   

5.
The motion of many intracellular pathogens is driven by the polymerization of actin filaments. The propulsive force developed by the polymerization process is thought to arise from the thermal motions of the polymerizing filament tips. Recent experiments suggest that the nucleation of actin filaments involves a phase when the filaments are attached to the pathogen surface by a protein complex. Here we extend the "elastic ratchet model" of Mogilner and Oster to incorporate these new findings. We apply this "tethered ratchet" model to derive the force-velocity relation for Listeria and discuss relations of our theoretical predictions to experimental measurements. We also discuss "symmetry breaking" dynamics observed in ActA-coated bead experiments, and the implications of the model for lamellipodial protrusion in migrating cells.  相似文献   

6.
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and ??35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force–velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.  相似文献   

7.
Ena/VASP proteins capture actin filament barbed ends   总被引:1,自引:0,他引:1  
Ena/VASP (vasodialator-stimulated protein) proteins regulate many actin-dependent events, including formation of protrusive structures, fibroblast migration, neurite extension, cell-cell adhesion, and Listeria pathogenesis. In vitro, Ena/VASP activities on actin are complex and varied. They promote actin assembly, protect filaments from cappers, bundle filaments, and inhibit filament branching. To determine the mechanisms by which Ena/VASP proteins regulate actin dynamics at barbed ends, we monitored individual actin filaments growing in the presence of VASP and profilin using total internal reflection fluorescence microscopy. Filament growth was unchanged by VASP, but filaments grew faster in profilin-actin and VASP than with profilin-actin alone. Actin filaments were captured directly by VASP-coated surfaces via interactions with growing barbed ends. End-attached filaments transiently paused but resumed growth after becoming bound to the surface via a filament side attachment. Thus, Ena/VASP proteins promote actin assembly by interacting directly with actin filament barbed ends, recruiting profilin-actin, and blocking capping.  相似文献   

8.
The RecA family proteins mediate homologous recombination, a ubiquitous mechanism for repairing DNA double-strand breaks (DSBs) and stalled replication forks. Members of this family include bacterial RecA, archaeal RadA and Rad51, and eukaryotic Rad51 and Dmc1. These proteins bind to single-stranded DNA at a DSB site to form a presynaptic nucleoprotein filament, align this presynaptic filament with homologous sequences in another double-stranded DNA segment, promote DNA strand exchange and then dissociate. It was generally accepted that RecA family proteins function throughout their catalytic cycles as right-handed helical filaments with six protomers per helical turn. However, we recently reported that archaeal RadA proteins can also form an extended right-handed filament with three monomers per helical turn and a left-handed protein filament with four monomers per helical turn. Subsequent structural and functional analyses suggest that RecA family protein filaments, similar to the F1-ATPase rotary motor, perform ATP-dependent clockwise axial rotation during their catalytic cycles. This new hypothesis has opened a new avenue for understanding the molecular mechanism of RecA family proteins in homologous recombination.  相似文献   

9.
Filament assembly from profilin-actin   总被引:2,自引:0,他引:2  
Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  相似文献   

10.
Actin-based propulsion of the bacteria Listeria and Shigella mimics the forward movement of the leading edge of motile cells. While Shigella harnesses the eukaryotic protein N-WASp to stimulate actin polymerization and filament branching through Arp2/3 complex, the Listeria surface protein ActA directly activates Arp2/3 complex by an unknown mechanism. Here we show that the N-terminal domain of ActA binds one actin monomer, in a profilin-like fashion, and Arp2/3 complex and mimics the C-terminal domain of WASp family proteins in catalyzing filament barbed end branching by Arp2/3 complex. No evidence is found for side branching of filaments by ActA-activated Arp2/3 complex. Mutations in the conserved acidic (41)DEWEEE(46) and basic (146)KKRRK(150) regions of ActA affect Arp2/3 binding but not G-actin binding. The motility properties of wild-type and mutated Listeria strains in living cells and in the medium reconstituted from pure proteins confirm the conclusions of biochemical experiments. Filament branching is followed by rapid debranching. Debranching is 3-4-fold faster when Arp2/3 is activated by ActA than by the C-terminal domain of N-WASp. VASP is required for efficient propulsion of ActA-coated beads in the reconstituted motility medium, but it does not affect the rates of barbed end branching/debranching by ActA-activated Arp2/3 nor the capping of filaments. VASP therefore affects another still unidentified biochemical reaction that plays an important role in actin-based movement.  相似文献   

11.
The RecA family of proteins mediates homologous recombination, an evolutionarily conserved pathway that maintains genomic stability by protecting against DNA double strand breaks. RecA proteins are thought to facilitate DNA strand exchange reactions as closed-rings or as right-handed helical filaments. Here, we report the crystal structure of a left-handed Sulfolobus solfataricus RadA helical filament. Each protomer in this left-handed filament is linked to its neighbour via interactions of a β-strand polymerization motif with the neighbouring ATPase domain. Immediately following the polymerization motif, we identified an evolutionarily conserved hinge region (a subunit rotation motif) in which a 360° clockwise axial rotation accompanies stepwise structural transitions from a closed ring to the AMP–PNP right-handed filament, then to an overwound right-handed filament and finally to the left-handed filament. Additional structural and functional analyses of wild-type and mutant proteins confirmed that the subunit rotation motif is crucial for enzymatic functions of RecA family proteins. These observations support the hypothesis that RecA family protein filaments may function as rotary motors.  相似文献   

12.
Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia.  相似文献   

13.
Chen LT  Ko TP  Chang YW  Lin KA  Wang AH  Wang TF 《PloS one》2007,2(9):e858
RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filament with three monomers per helical pitch. This structure reveals conformational details of the first ssDNA binding disordered loop (denoted L1 motif) and the dsDNA binding N-terminal domain (NTD). L1 and NTD together form an outwardly open palm structure on the outer surface of the helical filament. Inside this palm structure, five conserved basic amino acid residues (K27, K60, R117, R223 and R229) surround a 25 A pocket that is wide enough to accommodate anionic ssDNA, dsDNA or both. Biochemical analyses demonstrate that these five positively charged residues are essential for DNA binding and for RadA-catalyzed D-loop formation. We suggest that the overwound right-handed RadA filament represents a functional conformation in the homology search and pairing reaction. A new structural model is proposed for the homologous interactions between a RadA-ssDNA nucleoprotein filament and its dsDNA target.  相似文献   

14.
Cytoskeletal filaments are often capped at one end, regulating assembly and cellular location. The actin filament is a right-handed, two-strand long-pitch helix. The ends of the two protofilaments are staggered in relation to each other, suggesting that capping could result from one protein binding simultaneously to the ends of both protofilaments. Capping protein (CP), a ubiquitous alpha/beta heterodimer in eukaryotes, tightly caps (K(d) approximately 0.1-1 nM) the barbed end of the actin filament (the end favored for polymerization), preventing actin subunit addition and loss. CP is critical for actin assembly and actin-based motility in vivo and is an essential component of the dendritic nucleation model for actin polymerization at the leading edge of cells. However, the mechanism by which CP caps actin filaments is not well understood. The X-ray crystal structure of CP has inspired a model where the C termini ( approximately 30 amino acids) of the alpha and beta subunits of CP are mobile extensions ("tentacles"), and these regions are responsible for high-affinity binding to, and functional capping of, the barbed end. We tested the tentacle model in vitro with recombinant mutant CPs. Loss of both tentacles causes a complete loss of capping activity. The alpha tentacle contributes more to capping affinity and kinetics; its removal reduces capping affinity by 5000-fold and the on-rate of capping by 20-fold. In contrast, removal of the beta tentacle reduced the affinity by only 300-fold and did not affect the on-rate. These two regions are not close to each other in the three-dimensional structure, suggesting CP uses two independent actin binding tentacles to cap the barbed end. CP with either tentacle alone can cap, as can the isolated beta tentacle alone, suggesting that the individual tentacles interact with more than one actin subunit at a subunit interface at the barbed end.  相似文献   

15.
A mathematical model is derived to describe the distributions of lengths of cytoskeletal actin filaments, along a 1 D transect of the lamellipod (or along the axis of a filopod) in an animal cell. We use the facts that actin filament barbed ends are aligned towards the cell membrane and that these ends grow rapidly in the presence of actin monomer as long as they are uncapped. Once a barbed end is capped, its filament tends to be degraded by fragmentation or depolymerization. Both the growth (by polymerization) and the fragmentation by actin-cutting agents are depicted in the model, which takes into account the dependence of cutting probability on the position along a filament. It is assumed that barbed ends are capped rapidly away from the cell membrane. The model consists of a system of discrete-integro-PDE's that describe the densities of barbed filament ends as a function of spatial position and length of their actin filament “tails”. The population of capped barbed ends and their trailing filaments is similarly represented. This formulation allows us to investigate hypotheses about the fragmentation and polymerization of filaments in a caricature of the lamellipod and compare theoretical and observed actin density profiles. Received: 19 May 2000 / Revised version: 12 March 2001 / Published online: 19 September 2001  相似文献   

16.
Caulobacter crescentus flagellar filament has a right-handed helical form   总被引:6,自引:0,他引:6  
Caulobacter crescentus flagellar filaments were examined for their shape and handedness. Contour length, wavelength and height of the helical filaments were 1.34 +/- 0.14 micron, 1.08 +/- 0.05 micron and 0.27 +/- 0.04 micron, respectively. Together with the value of the filament diameter, 14 +/- 1.5 nm, the parameters of the curvature (alpha) and twist (phi) were calculated as 3.9(%) for alpha and 0.026 (rad) for phi, which are similar to those of the curly I filament of Salmonella typhimurium. Dark-field light microscopic analysis revealed that the C. crescentus wild-type filament possesses a right-handed helical form. Given the result that C. crescentus cells normally swim forward, in the opposite direction to a polar flagellum, it is likely that C. crescentus swims by rotation of a right-handed curly shaped flagellum in a clockwise sense, whereas S. typhimurium and Escherichia coli swim by rotation of left-handed normal type flagella in a counterclockwise sense.  相似文献   

17.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

18.
Ena/VASP proteins regulate the actin cytoskeleton during cell migration and morphogenesis and promote assembly of both filopodial and lamellipodial actin networks. To understand the molecular mechanisms underlying their cellular functions we used total internal reflection fluorescence microscopy to visualize VASP tetramers interacting with static and growing actin filaments in vitro. We observed multiple filament binding modes: (1) static side binding, (2) side binding with one-dimensional diffusion, and (3) processive barbed end tracking. Actin monomers antagonize side binding but promote high affinity (K(d) = 9 nM) barbed end attachment. In low ionic strength buffers, VASP tetramers are weakly processive (K(off) = 0.69 s(-1)) polymerases that deliver multiple actin monomers per barbed end-binding event and effectively antagonize filament capping. In higher ionic strength buffers, VASP requires profilin for effective polymerase and anti-capping activity. Based on our observations, we propose a mechanism that accounts for all three binding modes and provides a model for how VASP promotes actin filament assembly.  相似文献   

19.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

20.
A particle-based hybrid method of elastic network model and smooth-particle hydrodynamics has been employed to describe the propulsion of bacterial flagella in a viscous hydrodynamic environment. The method explicitly models the two aspects of bacterial propulsion that involve flagellar flexibility and long-range hydrodynamic interaction of low-Reynolds-number flow. The model further incorporates the molecular organization of the flagellar filament at a coarse-grained level in terms of the 11 protofilaments. Each of these protofilaments is represented by a collection of material points that represent the flagellin proteins. A computational model of a single flexible helical segment representing the filament of a bacterial flagellum is presented. The propulsive dynamics and the flow fields generated by the motion of the model filament are examined. The nature of flagellar deformation and the influence of hydrodynamics in determining the shape of deformations are examined based on the helical filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号