首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to establish a relationship between self-association and phospholipid binding of the human and the baboon apoA-I protein. The enthalpy changes on binding dimyristoyl lecithin and lysolecithin to either the human or the baboon native apoA-I protein were measured in a microcalorimeter. An endothermal process, most pronounced for the human apoprotein, was observed at low phospholipid levels. At higher phospholipid to protein ratios the binding was exothermal. Gel filtration experiments on Sephadex G-200 showed that the native apoprotein of both species consists of dimers and tetramers. The baboon native apoA-I protein contained a higher amount of dimers. After preincubation of the apoA-I protein with lysolecithin, the enthalpy changes measured on subsequent binding of dimyristoyl lecithin were shifted towards more exothermal values compared to the curve for the native apoprotein. The amplitude of this shift corresponds to that of the endothermal process observed on binding dimyristoyl lecithin to the native apoprotein. This process was attributed to a phospholipid-induced disaggregation of the apoA-I protein. Gel filtration data showed a decreased extent of aggregation in the apoA-I protein preincubated with lysolecithin. This sample consisted exclusively of dimers. Ultracentrifugal flotation of the complexes formed between the apoA-I protein, and respectively dimyristoyl lecithin and sphingomyelin indicated that preincubation with lysolecithin increased the extent of complex formation. These results suggest that the dimeric form of the apoA-I protein possesses the highest affinity for phospholipids. Any dissociation of higher polymers enhances the phospholipid-binding capacity of the human and the baboon apoA-I protein.  相似文献   

2.
The characteristics of the lipid - protein complex produced by the addition of the major apolipoproteins (apo AI and apo AII) of human high-density lipoprotein to synthetic phospholipids has been studied. Under the in vitro conditions utilized, apo AI binds to 1,2-dimyristoyl-sn-glycerophosphocholine and 1,2-dipalmitoyl-sn-glycerophosphocholine liposomes, but does not alter their morphologic characteristics. This binding occurs at temperatures above or below that of the transition (Tt) of the lipid bilayer. In contrast, apo AII spontaneously generates small, homogeneous disc-shaped lipid-protein complexes (50 X 10 a) from large phospholipid globules or from liposomes prepared with these lipids. This type of complex was only formed when the lipid/apo AII mixtures were warmed above the transition temperatures. The incorporation of apo AI into this small complex with apo AII may be greatly facilitated or inhibited depending on the sequence of addition of the various components. Under optimal circumstances, a maximum of 1 molecule of apo AI is incorporated with each molecule of apo A II into complexes with these two synthetic phospholipids.  相似文献   

3.
Two populations of high-density lipoprotein (HDL) particles exist in human plasma. Both contain apolipoprotein (apo) A-I, but only one contains apo A-II: Lp(AI w AII) and Lp(AI w/o AII). To study the extent of interaction between these particles, apo B-free plasma prepared by the selective removal of apo B-containing lipoproteins (LpB) from the plasma of three normolipidemic (NL) subjects and whole plasma from two patients with abetalipoproteinemia (ABL) were incubated at 37 degrees C for 24 h. Apo B-free plasma samples were used to avoid lipid-exchange between HDL and LpB. Lp(AI w AII) and Lp(AI w/o AII) were isolated from each apo B-free plasma sample before and after incubation and their protein and lipid contents quantified. Before incubation, ABL plasma had reduced levels of Lp(AI w AII) and Lp(AI w/o AII), (40% and 70% of normals, respectively). Compared to the HDL of apo B-free NL plasma, ABL HDL had higher relative contents of free cholesterol, phospholipid and total lipid, and contained more particles with apparent hydrated Stokes diameter in the 9.2-17.0 nm region. These differences were particularly pronounced in particles without apo A-II. Despite their differences, the total cholesterol contents of Lp(AI w AII) increased, while that of Lp(AI w/o AII) decreased in all five plasma samples and the amount of apo A-I in Lp(AI w AII) increased by 6-8 mg/dl in four during the incubation. These compositional changes were accompanied by a relative reduction of particles in the 7.0-8.2 nm Stokes diameter size region and an increase of particles in the 9.2-11.2 nm region. These data are consistent with intravascular modulation between HDL particles with and without apo A-II. The observed increase in apo A-II-associated cholesterol and apo A-I, could involve either the transfer of cholesterol and apo A-I from particles without apo A-II to those with A-II, or the transfer of apo A-II from Lp(AI w AII) to Lp(AI w/o AII). The exact mechanism and direction of the transfer remain to be determined.  相似文献   

4.
The interaction of synthetic dimyristoyl phosphatidylcholine (lecithin) liposomes with isolated apoC-I and apoC-III proteins from very low density lipoproteins has been studied by microcalorimetry. Complex formation is a highly exothermal process characterized by a maximal enthalpy of -130 kcal/mol (-544 kJ) apoC-III-1 and -65 kcal/mol apoC-I proteins (-272 kJ). The complex composition determined after its isolation by ultracentrifugal flotation agrees with the value derived from the enthalpy binding curves. The binding of a constant amount of dimyristoyl lecithin to apoprotein mixtures containing various proportions of apoA-I and apoC-III failed to demonstrate the existence of any preferential association between the two apoproteins, in contrast with results obtained previously with apoA-I/apoA-II protein mixtures. Finally the various contributions to the enthalpy of binding such as that arising from an increase in apoprotein helicity have been evaluated. A classification of the apolipoproteins according to their lipid-binding affinity is proposed as: apoA-II congruent to apoC-III greater than apoC-I greater than apoA-I proteins.  相似文献   

5.
The two major apolipoproteins of plasma high-density lipoproteins (HDL) are apolipoprotein AI (apo AI) and AII (apo AII). The apo AI and the correctly oriented apo CIII genes separated by 2.6 kb were obtained by fusion of two human lambda-genomic clones. The apo AII gene was isolated as a 3 kb clone. These apolipoprotein genes have been injected independently and together into Xenopus laevis oocytes and their expression studied. Both apolipoprotein genes were transcribed and translated into their preproforms and processed in Xenopus laevis oocytes to their proforms. They were secreted into the medium associated with newly synthesized phospholipids and neutral lipids as particles floating in the high-density lipoprotein range between 1.12 and 1.21 g/ml. Secreted apo AI is associated mainly with newly synthesized phosphatidylethanolamine and little triglyceride, apo AII with phosphatidylethanolamine, lysophosphatidylethanolamine and neutral lipids. Simultaneous injection of the apo AI and apo AII genes led to the secretion of both apoproteins which separated into two bands during CsCl-density gradient centrifugation. The heavier particles were associated with proapo AI and AII, phosphatidylethanolamine (greater than 90%) and traces of lysophosphatidylethanolamine as lipid components. Proapo AII was immunoprecipitated from the less dense fraction and found to be mainly associated with lysophosphatidylethanolamine. Radiolabelled newly synthesized apolipoproteins in secreted particles were characterized by immunoprecipitation after delipidation of the secreted lipoprotein particles. The oocyte-system proved very suitable for studies of the expression of serum apolipoprotein genes, the assembly of the apolipoproteins with specific lipids to lipoprotein particles and their secretion.  相似文献   

6.
The products resulting from the association of human apo A-I with binary phospholipid mixtures of dimyristoyl phosphatidylcholine (DMPC) and either dipalmitoyl (DPPC) or distearoyl (DSPC) phosphatidylcholine have been isolated and characterized. Effective lipid . protein complex formation was found to occur at the onset temperature for melting of the gel state, and equal incorporation of both lipid components of the binary mixture was observed. Two sizes of products were obtained, one containing 2 A-I molecules per complex and the other containing 3; the proportions of these two products depended upon the initial phospholipid/protein ratio employed. these two product species were found to be resolvable by density gradient centrifugation as well as gel filtration, reflecting substantial differences in composition as well as size. The ratio of DMPC to DPPC or DSPC was the same in the isolated complexes as in the initial mixture, suggesting that th protein does not associate preferentially with the fluid phase lipid, but with lipid domains in which the components are randomly distributed. Electron microscopy of recombinant particles containing a 2:1 ratio (w/w) of DSPC to DMPC revealed stacks of discs whose thickness was proportionately greater than for discs containing DMPC alone. Also of significance was the finding that recombinant discs containing 3 A-I molecules possessed a diameter approximately 1.5 times larger than recombinant discs containing 2 A-I molecules. These data are consistent with the model for the recombinant particles described by Tall et al. (Tall, A.R., Small, D.M., Deckelbau, R.J., and Shipley, G.G. (1977) J. Biol. Chem. 252; 4701-4711), in which the phospholipid is found as a circular bilayer, the thickness of which is dependent upon the length of the acyl chain, and around which the protein is distributed as an annulus.  相似文献   

7.
Discoidal complexes have been prepared from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the apoproteins of HDL3 (apo HDL3) or purified apo A-I. Gel electrophoresis established that apo HDL3 contained 74% apo A-I. Deconvolution and curve-fitting of the infra-red amide I band of the apoprotein in the lipid-protein complex revealed a secondary structure containing approximately 40% alpha-helix and 50% beta-structure. This contrasted with the results from circular dichroism studies (Surewicz et al. (1986) J. Biol. Chem., 261, 16191) of apo A-I/DMPC complexes which predicted 68% alpha-helix and 7% beta-structure. The discrepancy between the two methods and limitations of the two techniques for lipoproteins is discussed.  相似文献   

8.
The reversibility of the binding of human apolipoprotein A-I (apo A-I) to phospholipid has been monitored through the influence of guanidine hydrochloride (Gdn-HCl) on the isothermal denaturation and renaturation of apo A-1/dimyristoylphosphatidylcholine (DMPC) complexes at 24 degree C. Denaturation was studied by incubating discoidal 1:100 and vesicular 1:500 mol/mol apo A-I/DMPC complexes with up to 7 M Gdn-HCl for up to 72 h. Unfolding of apo A-I molecules was observed from circular dichroism spectra while the distribution of protein between free and lipid-associated states was monitored by density gradient ultracentrifugation. The ability of apo A-I to combine with DMPC in the presence of Gdn-HCl at 24 degrees C was also investigated by similar procedures. In both the denaturation and renaturation of 1:100 and 1:500 complexes, the final values of the molar ellipticity and the ratio of free to bound apo A-I at various concentrations of Gdn-HCl are dependent on the initial state of the lipid and protein; apo A-I is more resistant to denaturation when Gdn-HCl is added to existing complexes than to a mixture of apo A-I and DMPC. There is an intermediate state in the denaturation pathway of apo A-I/DMPC complexes which is not present in the renaturation; the intermediate comprises partially unfold apo A-I molecules still associated with the complex by some of their apolar residues. Complete unfolding of the alpha helix and subsequent desorption of the apo A-I molecules from the lipid/water interface involve cooperative exposure of these apolar residues to the aqueous phase. The energy barrier associated with this desorption step makes the binding of apo A-I to DMPC a thermodynamically irreversible process. Consequently, binding constants of apo A-I and PC cannot be calculated simply from equilibrium thermodynamic treatments of the partitioning of protein between free and bound states. Apo A-I molecules do not exchange freely between the lipid-free and lipid-bound states, and extra work is required to drive protein molecules off the surface. The required increased in surface pressure can be achieved by a net mass transfer of protein to the surface; in vivo, increases in the surface pressure of lipoproteins by lipolysis can cause protein desorption.  相似文献   

9.
Transfer of apolipoproteins (apo) between the two subpopulations of apo A-I-containing lipoproteins in human plasma: those with A-II [Lp(AI w AII)] and those without [Lp(AI w/o AII)], were studied by observing the transfer of 125I-apo from a radiolabeled subpopulation to an unlabeled subpopulation in vitro. When Lp(AI w AII) was directly radioiodinated, 50.3 +/- 7.4 and 19.5 +/- 7.7% (n = 6) of the total radioactivity was associated with A-I and A-II, respectively. In radioiodinated Lp(AI w/o AII), 71.5 +/- 6.8% (n = 6) of the total radioactivity was A-I-associated. Time-course studies showed that, while some radiolabeled proteins transferred from one population of HDL particles to another within minutes, at least several hours were necessary for transfer to approach equilibrium. Incubation of the subpopulations at equal A-I mass resulted in the transfer of 51.8 +/- 5.0% (n = 4) of total radioactivity from [125I]Lp(AI w/o AII) to Lp(AI w AII) at 37 degrees C in 24 h. The specific activity (S.A.) of A-I in the two subpopulations after incubation was nearly identical. Under similar incubation conditions, only 13.4 +/- 4.6% (n = 4) of total radioactivity was transferred from [125I]Lp(AI w AII) to Lp(AI w/o AII). The S.A. of A-I after incubation was 2-fold higher in particles with A-II than in particles without A-II. These phenomena were also observed with iodinated high-density lipoproteins (HDL) isolated by ultracentrifugation and subsequently subfractionated by immunoaffinity chromatography. However, when Lp(AI w AII) radiolabeled by in vitro exchange with free [125I]A-I was incubated with unlabeled Lp(AI w/o AII), the S.A. of A-I in particles with and without A-II differed by only 18% after incubation. These data are consistent with the following: (1) in both populations of HDL particles, some radiolabeled proteins transferred rapidly (minutes or less), while others transferred slowly (hours); (2) when Lp(AI w AII) and Lp(AI w/o AII) were directly iodinated, all labeled A-I in particles without A-II were transferable, but some labeled AI in particles with A-II were not; (3) when Lp(AI w AII) were labeled by in vitro exchange with [125I]A-I, considerably more labeled A-I were transferable. These observations suggest the presence of non-transferable A-I in Lp(AI w AII).  相似文献   

10.
W Kloas  W Hanke 《Peptides》1992,13(2):349-354
Angiotensin II (AII) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. AII binding was present in kidney glomeruli and in interrenal tissue of the outer zone of the adrenal gland. Saturation experiments showed that [125I]-[Val5]AII binds to a single class of binding sites with a dissociation constant (Kd) of 548 +/- 125 pM in glomeruli and 593 +/- 185 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 2.48 +/- 0.71 and 3.05 +/- 1.02 fmol/mm2, respectively. AII binding was displaced by unlabeled angiotensin analogues in the rank order: [Sar1]AII greater than human AII greater than [125I]-[Val5]AII = [Val5]AII = human AIII much greater than human AI. The AII binding sites in glomeruli and interrenal tissue suggest an influence of AII on glomerular filtration rate and adrenal steroid secretion to take part in osmomineral regulation of the frog.  相似文献   

11.
We have investigated the frequencies of RFLPs of the apolipoprotein (apo) AII gene and of the apo AI-CIII-AIV gene cluster in 109 men, selected from a random sample of 1,910 men aged 45-59 years, to cover a wide range of plasma high-density-lipoprotein (HDL)-cholesterol concentration. There was no significant difference in apo AI or apo AII RFLP allele frequency between groups of individuals with high and low HDL-cholesterol concentration. However, the apo AI PstI RFLP showed an association with genetic variation determining the plasma concentration of apo AI in this sample. Genetic variation in the apo AI-CIII-AIV gene region, as defined by haplotypes, accounted for 16% of the phenotypic variance in the apo AI concentration and for 8% of the phenotypic variance in HDL-cholesterol concentration. There was no significant association between alleles of the apo AII MspI RFLP and genetic variation determining apo AII or HDL concentration. The data demonstrate that genetic variation in the apo AI-CIII-AIV gene cluster is involved in determining the serum concentration of apo AI in this sample of clinically well individuals.  相似文献   

12.
We have examined the associations between levels of plasma apolipoprotein (apo) AI, apo CIII and apo AIV and genetic variation in the apo AI-CIII-AIV gene cluster in 162 boys and young men from Belgium aged from 7 to 23 years. Genotypes were determined for six restriction enzymes XmnI, PstI, SstI, PvuIIA-CIII, PvuIIB-AIV and XbaI, and for the G to A substitution at -75 bp in the 5' region of the apo AI gene. The polymorphism most strongly associated with apo AI levels was the G to A substitution (P = 0.025, R2 x 100 = 3.6%) confirming previous observations. The polymorphism most strongly associated with apo CIII levels was that of PvuIIA-CIII (P = 0.023, R2 x 100 = 2.9%) in the apo CIII gene. This novel association must be interpreted with caution until it has been confirmed in an independent sample. The polymorphism associated with the largest effect on apo AIV levels was that detected with XbaI in the apo AIV gene, but this association was not statistically significant. Previously reported associations between the SstI polymorphism and triglyceride levels, and between the PstI polymorphism and apo AI levels, were weakly detected in the present sample. Our results show that variation associated with some of the polymorphisms in the apo AI-CIII-AIV cluster makes a small, but statistically significant, contribution to the determination of apo AI and apo CIII levels in this sample of young men and boys. These observations may, in part, explain reported associations between polymorphisms in this gene cluster, differences in plasma lipid and lipoprotein levels, and prevalence of coronary artery disease.  相似文献   

13.
N H Fidge 《FEBS letters》1986,199(2):265-268
The existence of a cell receptor which recognises plasma high density lipoprotein (HDL) has been suggested from studies which demonstrate specific binding of HDL3 to cultured cells derived from various tissues in the body. This study provides evidence of a specific HDL-binding protein in crude plasma membranes prepared from rat kidney and liver. Following separation of solubilised membrane proteins on polyacrylamide gel slabs and 'Western' blotting, one major band was identified which bound HDL3, or apo AI or apo AII. The protein, which was present in both liver and kidney membranes, was partially purified by repetitive preparative SDS-polyacrylamide gel electrophoresis and although accompanied by considerable loss of binding activity, could still be detected by the ligand-blotting procedure used initially to detect its presence in cell membranes.  相似文献   

14.
The lipid binding properties of apolipoprotein (apo) AIMilano, a molecular variant of human apolipoprotein AI, characterized by the Arg173----Cys substitution, was investigated by the use of dimyristoylphosphatidylcholine liposomes. Both the variant AIMilano and normal AI are incorporated to the same extent in stable complexes isolated by gel filtration, showing similar dimensions and stoichiometries. A higher affinity of apo-AIMilano for dimyristoylphosphatidylcholine is suggested by the faster association rate of the variant apoprotein compared to normal AI; similarly, apo-AIMilano is more readily displaced by guanidine hydrochloride from the isolated dimyristoylphosphatidylcholine-apoprotein complexes. When the secondary structure of apo-AIMilano was investigated by spectrofluoroscopy and circular dichroism, a higher fluorescence peak wavelength and a lower alpha-helical content were detected in the variant apoprotein compared to normal AI. The substitution Arg173----Cys in the AIMilano dramatically alters the amphipathic nature of the modified alpha-helical fragment of apoprotein AI. The association rate with lipids is accelerated by an increased exposure of hydrophobic residues. The reduced stability of the lipid-apoprotein particles is possibly mediated by a reduction in the number of helical segments involved in lipid association. The high flexibility of the AIMilano apolipoprotein in the interaction with lipids may explain its accelerated catabolism and the possibly improved uptake capacities for tissue lipids.  相似文献   

15.
Apolipoprotein (apo-) E3, when combined with the phospholipid dimyristoylphosphatidylcholine (DMPC), binds avidly to apo-B,E (low density lipoprotein) receptors on human fibroblasts. Apolipoprotein E2 isolated from type III hyperlipoproteinemic subjects, which differs from apo-E3 by the presence of cysteine instead of arginine at residue 158, possesses only about 1% of the receptor binding activity of apo-E3. Modification of apo-E2 with cysteamine, which converts the cysteine at position 158 to a positively charged lysine analogue, activates receptor binding approximately 13-fold. In the present experiments, thrombin was used to cleave apo-E2 into two fragments (Mr = 22,000 and Mr = 10,000). The larger fragment, which has been shown to possess the receptor binding domain, displayed binding activity up to 12-fold greater than intact apo-E2 or equivalent to apo-E2 treated with cysteamine. When the Mr = 22,000 fragment was modified with cysteamine and combined with DMPC, receptor binding was further enhanced, attaining the level of activity of normal apo-E3 X DMPC, a 100-fold increase over apo-E2 X DMPC binding. When the cysteamine modification was reversed by incubation with beta-mercaptoethanol, the Mr = 22,000 fragment retained most of its binding activity. However, when the same sample was tested 24 h later, the level of binding activity dropped significantly. The receptor binding of apo-E2-containing beta-very low density lipoproteins could also be activated by cysteamine treatment, with the same retention of enhanced binding activity occurring after the reversal of the modification. These results indicate that apo-E2 can attain full binding activity by the removal of the carboxyl-terminal one-third of the molecule and the addition of a positive charge at residue 158 of the molecule. The retention of enhanced binding after the reversal of the cysteamine modification indicates that the enhanced binding is probably due to conformational changes induced in the binding domain (and maintained by the phospholipid) and not merely to the presence of the positive charge at residue 158.  相似文献   

16.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45 +/- 7 nM in pure DMPC SUVs to 219 +/- 20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7 +/- 0.2 nM in the gel phase at 18 degrees C and to 2.6 +/- 0.7 nM in the fluid phase at 55 degrees C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

17.
Human apoprotein(apo) CI and apo AII cDNA probes have been used to analyze the segregation of the human genes in panels of human-mouse hybrids. The apo CI (APOCI) gene segregates with chromosome 19 and the apo AII (APOA2) gene with chromosome 1. Somatic cell hybrids containing chromosome translocations were used to map the apo AII gene to the 1p21-1qter region. Human APOA2 is polymorphic for the restriction endonuclease Msp I. Comparison of human and mouse chromosome 1 reveals a conserved group including apo AII, renin and peptidase genes and suggests that APOA2 will be found distal to this group on human chromosome 1. The mouse apo AII gene is closely linked with genes that regulate HDL structure. Similar HDL regulatory genes will probably be found near human APOA2.  相似文献   

18.
Apolipoprotein (apo) E-deficient rat high-density lipoproteins (HDL) bind to isolated rat hepatocytes at 4 degrees C by a process shown to be saturable and competed for by an excess of unlabeled HDL. Uptake (binding and internalization) at 37 degrees C was also saturable and competed for by an excess of unlabeled HDL. At 37 degrees C the HDL apoprotein was degraded as evidenced by the appearance of trichloroacetic acid-soluble radioactivity in the incubation media. The binding of a constant amount of 125I-apo-E-deficient HDL was measured in the presence of increasing concentrations of various lipoproteins. HDL and dimyristoyl phosphatidylcholine (DMPC) X apo-A-I complexes decreased binding by 80 and 65%, respectively. Human low-density lipoproteins, DMPC X apo-E complexes, and DMPC vesicles alone did not compete for apo-E-deficient HDL binding. However, DMPC X apo-E complexes did compete for the binding of the total HDL fraction that contained apo-E but to a lesser extent than did DMPC X apo-A-I. DMPC X 125I-apo-A-I complexes also bound to hepatocytes, and this binding was competed for by excess HDL (70%) and DMPC X apo-A-I complexes (65%), but there was no competition for binding by DMPC vesicles or DMPC X apo-E complexes. It thus appears that hepatocytes have a specific receptor for HDL and that apo-A-I is the ligand for this receptor.  相似文献   

19.
To determine the apolipoprotein specificity of high density lipoprotein (HDL) receptor, apolipoprotein A-I (apo-AI) and apolipoprotein A-II (apo-AII) purified from high density lipoprotein3 (HDL3) were reconstituted into dimyristoyl phosphatidylcholine vesicles (DMPC) and their ability to bind to luteinized rat ovarian membranes was examined. Both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC were shown to bind to ovarian membranes with Kd = 2.87 and 5.70 micrograms of protein/ml, respectively. The binding of both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC was inhibited by unlabeled HDL3, apo-A-I.DMPC, apo-A-II.DMPC, apo-C-I.DMPC, apo-C-II.DMPC, apo-C-III1.DMPC, and apo-C-III2.DMPC, but not by DMPC vesicles, bovine serum albumin.DMPC or low density lipoprotein. Since the binding labeled apo-A-I.DMPC and apo-A-II.DMPC was inhibited by the DMPC complexes of apo-C groups, the direct binding of 125I-apo-C-III1.DMPC was also demonstrated with Kd = 9.6 micrograms of protein/ml. In addition, unlabeled apo-A-I.DMPC, and apo-A-II.DMPC, as well as apo-C.DMPC, inhibited 125I-HDL3 binding. 125I-apo-A-I, 125I-apo-A-II, and 125I-apo-C-III1 in the absence of DMPC also bind to the membranes. These results suggest that HDL receptor recognizes apolipoprotein AI, AII, and the C group and that the binding specificity of the reconstituted lipoproteins is conferred by their apolipoprotein moiety rather than the lipid environment. In vivo pretreatment of rats with human chorionic gonadotropin resulted in an increase of 125I-apo-A-I.DMPC, 125I-apo-A-II.DMPC, and 125I-apo-C-III1.DMPC binding activities. However, no induction of binding activity was observed when the apolipoprotein was not included in DMPC vesicles. An examination of the equilibrium dissociation constant and binding capacity for 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC after human chorionic gonadotropin treatment revealed that the increase in binding activity was due to an increase in the number of binding sites rather than a change in the binding affinity. These results further support our contention that apo-A-I, apo-A-II, and the apo-C group bind to HDL receptor. In conclusion, the HDL receptor of luteinized rat ovary recognizes apolipoproteins A-I, A-II, and the C group but not low density lipoprotein, and the binding is induced by human chorionic gonadotropin in vivo.  相似文献   

20.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45±7 nM in pure DMPC SUVs to 219±20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7±0.2 nM in the gel phase at 18°C and to 2.6±0.7 nM in the fluid phase at 55°C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号