首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chronic administration of 2-guanidinoethane sulfonic acid on the levels of intra- and extracellular amino acids in the rat hippocampus were studied. The tissue content of taurine was selectively reduced by almost one third after 9 days of peroral administration of 1% 2-guanidinoethane sulfonate. Extracellular levels of amino acids were monitored with the brain microdialysis method. The taurine concentration in the extracellular fluid was depressed in relation to the decrease in intracellular taurine. Unexpectedly, extracellular (but not intracellular) glutamate was doubled in 2-guanidinoethane sulfonate treated animals. The kainic acid evoked release of taurine was suppressed in the 2-guanidinoethane sulfonate group, whereas the kainate stimulated efflux of glutamate was elevated after 2-guanidinoethane sulfonate administration. The acute metabolic effects of kainate were studied by measuring the efflux of the adenosine triphosphate breakdown products hypoxanthine, xanthine, inosine and adenosine. No differences were found between control and 2-guanidinoethane sulfonate treated rats with respect to basal or kainic acid evoked release of purine catabolites. Also, the neuronal loss caused by kainate injection into the hippocampus was not modified by 2-guanidinoethane sulfonate treatment, suggesting that endogenous taurine does not affect these responses. We conclude that chronic administration of 2-guanidinoethane sulfonate does not sensitize central neurons to the metabolic and toxic actions of kainate.  相似文献   

2.
Changes in amino acid concentrations were studied in the cortex, cerebellum, and hippocampus of the rat brain, after 20 min of seizure activity induced by kainic acid, 47 mumol/kg i.v.; L-allylglycine, 2.4 mmol/kg i.v.; or bicuculline, 3.27 mumol/kg i.v. in paralysed, mechanically ventilated animals. Metabolic changes associated with kainic acid seizures predominate in the hippocampus, where there are decreases in aspartate (-26%), glutamate (-45%), taurine (-20%), and glutamine (-32%) concentrations and an increase in gamma-aminobutyric acid (GABA) concentration (+ 26%). L-Allylglycine seizures are associated with generalized decreases in GABA concentrations (-32 to -54%), increases in glutamine concentrations (+10 to +53%), and a decrease in cortical aspartate concentration (-14%). Bicuculline seizures, in fasted rats, are associated with marked increases in the levels of hippocampal GABA (+106%) and taurine (+40%). In the cerebellum, there are increases in glutamine (+50%) and taurine concentrations (+36%). These changes can be explained partially in terms of known biochemical and neurophysiological mechanisms, but uncertainties remain, particularly concerning the cerebellar changes and the effects of kainic acid on dicarboxylic amino acid metabolism.  相似文献   

3.
The anticonvulsive effects of GABA, taurine, and glycine were investigated on several chemically-induced and genetic seizure models. Intravenous injections of either GABA, taurine, or glycine provided protection against 3-mercaptopropionic acid (MPA)-induced convulsions in adult Swiss mice. GABA was partially effective against isonicotinic acid hydrazide and was without effect against bicuculline-induced convulsions bProlonged administration of glycine prevented MPA-induced convulsions but not electrically induced seizures or seizures induced by strychnine or metrazol.Intragastric glycine protected young audiogenic seizure-susceptible DBA/2 mice against all three phases of sound-induced convulsions (wild running, clonic and tonic seizure), but GABA and taurine provided little or no protection. With increase of glycine, the cerebral levels of glutamine and serine also increased, but that of glutamic acid decreased. The endogenous glutamic and glycine levels were slightly higher in the brains of the audiogenic seizure-susceptible DBA/2 mice than in that of the resistant BALB/Cy strain.  相似文献   

4.
Baran H 《Amino acids》2006,31(3):303-307
Summary. The aim of the study was to investigate the changes of taurine in the kainic acid (KA, 10 mg/kg, s.c.) chronic model of epilepsy, six months after KA application. The KA-rats used were divided into a group of animals showing weak behavioural response to KA (WDS, rare focal convulsion; rating scale <2 up to 3 h after KA injection) and a group of strong response to KA (WDS, seizures; rating >3 up to 3 h after KA injection). The brain regions investigated were caudate nucleus, substantia nigra, septum, hippocampus, amygdala/piriform cortex, and frontal, parietal, temporal and occipital cortices. KA-rats with rating <2 developed spontaneous WDS which occurred chronically and six months after KA injection increased taurine levels were found in the hippocampus (125.4% of control). KA-rats with rating >3 developed spontaneous recurrent seizures and six months after injection increased taurine levels were found in the caudate nucleus (162.5% of control) and hippocampus (126.6% of control), while reduced taurine levels were seen in the septum (78.2% of control). In summary, increased taurine levels in the hippocampus may involve processes for membrane stabilisation, thus favouring recovery after neuronal hyperactivity. The increased taurine levels in the caudate nucleus could be involved in the modulation of spontaneous recurrent seizure activity.  相似文献   

5.
The glutamate analogues N-methyl-D-aspartate (NMDA), kainic acid (KA), and quisqualic acid (QA), prepared in different hypertonic media, were perfused in vivo in the hippocampal CA1 field of rats using a microdialysis technique. Extracellular taurine levels, estimated after analysis of the taurine content of dialysates, increased during perfusion of all three agonists but varied according to the osmolarity of the medium. The NMDA-induced increase in extracellular taurine content was only slightly inhibited by perfusion of 150 and 300 mM sucrose. The KA-evoked increase was partially dependent on extracellular osmolarity, because addition of 50 and 150 mM sucrose caused a dose-dependent inhibition that was not augmented using higher sucrose concentrations. QA caused a taurine increase that was totally abolished by addition of 50 mM sucrose. These results indicate that the rise in extracellular taurine level elicited by QA and part of the increase elicited by KA are probably due to a release caused by the cellular swelling that these substances evoke, a finding substantiating the previously proposed osmoregulatory role of taurine. However, almost all the increase in extracellular taurine content caused by NMDA and all the osmotically insensitive part of the KA-evoked rise cannot be explained as release triggered by cell swelling and may reflect a function of taurine other than osmoregulation.  相似文献   

6.
The effect of local administration of kainic acid in the rabbit hippocampus was studied; the hippocampus was perfused continuously in the freely moving animal with an implanted 0.3-mm dialysis fiber. The pattern of endogenous amino acids in the perfusate, reflecting extracellular amino acids, was monitored with liquid chromatography separation and fluorimetric detection of amino acid derivatives. Kainic acid was included in the perfusion medium for up to 70 min at 0.1-1.0 mM and, with time, induced epileptiform activity. Endogenous glutamic acid, taurine, and phosphoethanolamine levels were increased selectively at the lower perfusion concentrations of kainic acid. Long perfusion periods with higher concentrations increased the levels of virtually all amino acids. Perfusion of the hippocampus with depolarizing concentrations of potassium gave an amino acid response partly similar to that seen with kainic acid treatment. However, one notable difference between the two responses was that the extracellular concentration of glutamine, although not influenced by kainic acid, was significantly decreased after high potassium concentrations. These results confirm previous notions that kainic acid has a primarily excitatory effect, one manifestation of this effect being the release of glutamic acid.  相似文献   

7.

Background

Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. Chronic supplementation of taurine in drinking water to mice increases brain excitability mainly through alterations in the inhibitory GABAergic system. These changes include elevated expression level of glutamic acid decarboxylase (GAD) and increased levels of GABA. Additionally we reported that GABAA receptors were down regulated with chronic administration of taurine. Here, we investigated pharmacologically the functional significance of decreased / or change in subunit composition of the GABAA receptors by determining the threshold for picrotoxin-induced seizures. Picrotoxin, an antagonist of GABAA receptors that blocks the channels while in the open state, binds within the pore of the channel between the β2 and β3 subunits. These are the same subunits to which GABA and presumably taurine binds.

Methods

Two-month-old male FVB/NJ mice were subcutaneously injected with picrotoxin (5 mg kg-1) and observed for a) latency until seizures began, b) duration of seizures, and c) frequency of seizures. For taurine treatment, mice were either fed taurine in drinking water (0.05%) or injected (43 mg/kg) 15 min prior to picrotoxin injection.

Results

We found that taurine-fed mice are resistant to picrotoxin-induced seizures when compared to age-matched controls, as measured by increased latency to seizure, decreased occurrence of seizures and reduced mortality rate. In the picrotoxin-treated animals, latency and duration were significantly shorter than in taurine-treated animas. Injection of taurine 15 min before picrotoxin significantly delayed seizure onset, as did chronic administration of taurine in the diet. Further, taurine treatment significantly increased survival rates compared to the picrotoxin-treated mice.

Conclusions

We suggest that the elevated threshold for picrotoxin-induced seizures in taurine-fed mice is due to the reduced binding sites available for picrotoxin binding due to the reduced expression of the beta subunits of the GABAA receptor. The delayed effects of picrotoxin after acute taurine injection may indicate that the two molecules are competing for the same binding site on the GABAA receptor. Thus, taurine-fed mice have a functional alteration in the GABAergic system. These include: increased GAD expression, increased GABA levels, and changes in subunit composition of the GABAA receptors. Such a finding is relevant in conditions where agonists of GABAA receptors, such as anesthetics, are administered.
  相似文献   

8.
Abstract: The light-stimulated release of [3H]taurine from chick retina was studied in chicks intraocularly injected with kainic acid (60 nmol). This treatment produced a loss of more than 80% of the inner nuclear and the inner synaptic layers, sparing the outer retinal layers. Concomitantly, the treatment produced a marked decrease of endogenous GABA and glycine but not of taurine. The activity of glutamate decarboxylase was also markedly decreased in the kainic acid-treated retinas. The release of [3H]taurine, either spontaneous or stimulated by light, was unaffected by the treatment. These results suggest that the light-stimulated efflux of taurine occurs from the retinal layers which are not affected by the kainic acid treatment.  相似文献   

9.
Taurine, aspartic acid, glutamic acid, glycine, and GABA were administered either intragastrically or in liquid diets to mice and rats. This resulted in a great increase in the plasma concentration of the administered amino acid, with plasma levels remaining elevated for several days.The prolonged increase in plasma levels resulted in significant increases in brain levels. Under these experimental conditions, taurine, aspartic acid, and glutamic acid were increased 30–60%; glycine and GABA 100%. During these experiments, plasma levels of taurine, aspartate, and glutamate were below brain levels; those of glycine and GABA were above.The findings show that even slowly penetrating amino acid levels can be increased in brain after parenteral administration of large doses.  相似文献   

10.
Prolonged seizures in early childhood are associated with an increased risk of development of epilepsy in later life. The mechanism(s) behind this susceptibility to later development of epilepsy is unclear. Increased synaptic activity during development has been shown to permanently alter excitatory neurotransmission and could be one of the mechanisms involved in this increased susceptibility to the development of epilepsy. In the present study we determine the effect of status-epilepticus induced by lithium/pilocarpine at postnatal day 10 (P10 SE) on the expression of glutamate receptor and transporter mRNAs in hippocampal dentate granule cells and protein levels in dentate gyrus of these animals in adulthood. The results revealed a decrease in glutamate receptor 2 (GluR2) mRNA expression and protein levels as well as an increase in protein levels for the excitatory amino acid carrier 1 (EAAC1) in P10 SE rats compared to controls. Expression of glutamate receptor 1 (GluR1) mRNA was decreased in both P10 SE rats and identically handled, lithium-injected littermate controls compared to naive animals, and GluR1 protein levels were significantly lower in lithium-controls than in naive rats, suggesting an effect of either the handling or the lithium on GluR1 expression. These changes in EAA receptors and transporters were accompanied by an increased susceptibility to kainic acid induced seizures in P10 SE rats compared to controls. The current data suggest that early-life status-epilepticus can result in permanent alterations in glutamate receptor and transporter gene expression, which may contribute to a lower seizure threshold.  相似文献   

11.
The nature of progesterone (P4)'s neuroprotective effects is of interest. We investigated effects of P4 when administered before, or after, kainic acid, which produces ictal activity and damage to the hippocampus, to mediate effects on spatial performance. The hypothesis was that P4, compared with vehicle, would reduce decrements in Morris Water Maze performance induced by kainic acid. Experiment 1: We examined the effects of kainic acid on plasma stress hormone, corticosterone, and progestogen (P4 and its metabolites) levels in plasma and the hippocampus after subcutaneous (s.c.) P4 administration to ovariectomized rats. Rats administered kainic acid had the highest corticosterone levels immediately following injection. P4 is 5α‐reduced to dihydroprogesterone (DHP) and subsequently metabolized to 5α‐pregnan‐3α‐ol‐20‐one (3α,5α‐THP) by 3α‐hydroxysteroid dehydrogenase. The regimen of P4 used produced circulating and hippocampal levels of P4, DHP, and 3α,5α‐THP within a physiological range, which declined at 14 hours postinjection and were not altered by kainic acid. Experiment 2: The physiological P4 regimen was administered to rats before, or after, kainic acid‐induced seizures, and later effects on water maze performance were compared with that of rats administered vehicle. Rats administered kainic acid had significantly poorer performance in the water maze (i.e., increased latencies and distances to the hidden platform) than did rats administered vehicle. Administration of P4 before, but not after, kainic acid prevented these performance deficits. Thus, these data suggest that a physiological regimen of P4 can prevent some of the deficits in water maze performance produced by kainic acid. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 142‐152, 2011  相似文献   

12.
Summary Alcohol was administered chronically to female Sprague Dawley rats in a nutritionally adequate totally liquid diet for 28 days. This resulted in hepatic steatosis and lipid peroxidation. Taurine, when co-administered with alcohol, reduced the hepatic steatosis and completely prevented lipid peroxidation. The protective properties of taurine in preventing fatty liver were also demonstrated histologically. Although alcohol was found not to affect the urinary excretion of taurine (a non-invasive marker of liver damage), levels of serum and liver taurine were markedly raised in animals receiving alcohol + taurine compared to animals given taurine alone. The ethanol-inducible form of cytochrome P-450 (CYP2E1) was significantly induced by alcohol; the activity was significantly lower than controls and barely detectable in animals fed the liquid alcohol diet containing taurine. In addition, alcohol significantly increased homocysteine excretion into urine throughout the 28 day period of ethanol administration; however, taurine did not prevent this increase. There was evidence of slight cholestasis in animals treated with alcohol and alcohol + taurine, as indicated by raised serum bile acids and alkaline phosphatase (ALP). The protective effects of taurine were attributed to the potential of bile acids, especially taurine conjugated bile acids (taurocholic acid) to inhibit the activity of some microsomal enzymes (CYP2E1). Thesein vivo findings demonstrate for the first time that hepatic steatosis and lipid peroxidation, occurring as a result of chronic alcohol consumption, can be ameliorated by administration of taurine to rats.  相似文献   

13.
Several studies have suggested that the concentration of thyrotropin releasing hormone (TRH) in the central nervous system (CNS) is influenced by the level of CNS activation. Hibernation in the ground squirrel and estivation in the lungfish result in region-specific decreases in TRH concentrations. Repeated electroconvulsive shock (ECS) and amygdaloid kindling have been shown to result in elevations of TRH in limbic brain regions. In the present study, limbic seizures induced by systemic administration of kainic acid resulted in substantial increases in the TRH content of posterior cortex and of dorsal and ventral hippocampus, and in moderate elevations in anterior cortex, amygdala/piriform cortex and corpus striatum. Maximal elevations in TRH were observed 2-4 days after kainic acid administration, and by 14 days TRH levels were similar to control values, with the exception of the dorsal hippocampus, which exhibited more prolonged elevations in TRH levels. Prior exposure to limbic seizure activity attenuated the magnitude of TRH elevation in response to a second administration of kainic acid in the posterior cortex but in no other region. These results indicate that seizure-related processes or events influence TRH systems in the CNS. Neuronal populations involved in limbic seizure induced damage may be involved in the modulation of posterior cortical TRH levels.  相似文献   

14.
Because of its preferential neuroexcitatory effects on the hippocampal neurones kainic acid (KA) is used for inducing partial seizures with a complex symptomatology. In this study the authors investigated the effect of intraperitoneal administration of KA, in doses of 2-16 mg/kg, on the laboratory rat during ontogenesis. The experimental animals were males aged 7, 12, 18, 25 and 90 days. The first signs of an effect in adult rats were automatisms; in young animals, jerks also appeared. The most important automatisms were wet dog shakes, which preponderated in 25-day-old and older animals, whereas in the young rats they consisted chiefly of intensive scratching. Minimal seizures with a motor pattern identical to minimal metrazol seizures were observed in all the age groups and so were generalized tonic-clonic convulsions, which appeared after large doses of KA. The systemic administration of KA is a convenient model of temporal seizures and their progressive generalization and could act as a model for testing broad spectrum antiepileptics.  相似文献   

15.
The cysteine protease caspase-3 may be involved in the mechanism of cell death following seizures. Using a rat model of focally evoked limbic epilepsy with continuous electroencephalography monitoring, we investigated seizure-induced changes in caspase-3 protein expression and processing, enzyme activity, and the in vivo effect of caspase-3 inhibition. Seizures were induced by intraamygdaloid injection of kainic acid (0.1 microg) and were terminated after 45 min by diazepam (30 mg/kg) administration. Animals were killed 0-72 h following diazepam administration. Levels of the 32-kDa proenzyme form of caspase-3 were unaffected by seizures. Levels of the 17-kDa cleaved (active) fragment of caspase-3 were almost undetectable in control brain, but were increased significantly at 4 and 24 h within ipsilateral hippocampus and cortex in seizure animals. Caspase-3-like protease activity was increased within the ipsilateral hippocampus at 8 and 24 h following seizures. Caspase-3 immunoreactivity was increased within the vulnerable ipsilateral CA3/CA4 subfield at 24 and 72 h following seizures and was associated predominantly, but not exclusively, with neurons exhibiting DNA fragmentation. The putatively selective caspase-3 inhibitor N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone significantly improved neuronal survival bilaterally within the hippocampal CA3/CA4 subfields following seizures. Collectively, these data suggest that caspase-3 may play a significant role in the mechanism by which neurons die following seizures.  相似文献   

16.
Taurine (2-aminoethanesulfonic acid) is a free sulfur-containing β-amino acid which has antioxidant, antiinflammatory and detoxificant properties. In the present study, the role of endotoxemia on peroxynitrite formation via 3-nitrotyrosine (3-NT) detection, and the possible antioxidant effect of taurine in lipopolysaccharide (LPS)-treated guinea pigs were aimed. 40 adult male guinea pigs were divided into four groups; control, endotoxemia, taurine and taurine+endotoxemia. Animals were administered taurine (300 mg/kg), LPS (4 mg/kg) or taurine plus LPS intraperitoneally. After 6 h of incubation, when highest blood levels of taurine and endotoxin were attained, the animals were sacrificed and spleen samples were collected. The amounts of 3-nitrotyrosine and taurine were measured by HPLC, and reactive nitrogen oxide species (NOx) which are stable end products of nitric oxide was measured spectrophotometrically in spleen tissues. LPS administration significantly decreased the concentration of taurine whilst increased levels of 3-NT and NOx compared with control group. It was determined that taurine treatment decreased the levels of 3-nitrotyrosine and NOx in taurine+endotoxemia group. The group in which taurine was administered alone, contradiction to well-known antioxidant effect, taurine caused elevated concentration of 3-NT and NOx. This data suggest that taurine protects spleen against oxidative damage in endotoxemic conditions. However, the effect of taurine is different when it is administered alone. In conclusion, taurine may act as an antioxidant during endotoxemia, and as a prooxidant in healthy subjects at this dose.  相似文献   

17.
Kim HC  Bing G  Jhoo WK  Kim WK  Shin EJ  Im DH  Kang KS  Ko KH 《Life sciences》2003,72(7):769-783
The effects of dextromethorphan (DM), and its major metabolite dextrorphan (DX) on kainic acid-induced seizures in mice were examined. Intracerebroventricular DM or DX (5 or 10 microg/0.5 microl) pretreatment significantly attenuated seizures induced by kainic acid (0.07 microg/0.07 microl) in a dose-related manner. DM or DX pretreatment significantly attenuated kainic acid-induced increases in AP-1 DNA-binding activity and fos-related antigen-immunoreactivity as well as neuronal loss in the hippocampus. DM appears to be a more potent neuroprotectant than DX. Since the high-affinity DM binding sites are recognized as being identical to the sigma-1 site, we examined the role of the sigma-1 receptor on the pharmacological action mediated by DM or DX. Pretreatment with the sigma-1 receptor antagonist BD1047 (2.5 or 5 mg/kg, i.p.) blocked the neuroprotection by DM in a dose-related manner. This effect of BD 1047 was more pronounced in the animals treated with DM than in those treated with DX. Combined, our results suggest that metabolism of DM to DX is not essential for DM to exert its effect. They also suggest that DM provides neuroprotection from kainic acid via sigma-1 receptor modulation.  相似文献   

18.
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.  相似文献   

19.
An isocratic high-performance liquid chromatographic technique was developed to measure levels of gamma-aminobutyric acid (GABA), glutamate, and taurine in the brain and pituitary of goldfish. Accuracy of this procedure for quantification of these compounds was established by evaluating anesthetic and postmortem effects and by selectively manipulating GABA concentrations by intraperitoneal administration of the glutamic acid decarboxylase (GAD) inhibitor 3-mercaptopropionic acid or the GABA transaminase inhibitor gamma-vinyl GABA. The technique provided a simple, rapid, and reliable method for evaluating the concentrations of these amino acids without the use of complex gradient chromatographic systems. To investigate the relationship between neurotransmitter amino acids and the control of pituitary secretion of gonadotropin, the effects of injection of taurine, GABA, or monosodium glutamate on GABA, glutamate, taurine, and, in some instances, monoamine concentrations in the brain and pituitary were evaluated and related to serum gonadotropin levels. Injection of taurine caused an elevation in serum gonadotropin concentrations. In addition, injection of the taurine precursor hypotaurine but not the taurine catabolite isethionic acid elevated serum gonadotropin levels. Intracerebroventricular injection of either GABA or taurine also elevated serum gonadotropin concentrations. Pretreatment of recrudescent fish with alpha-methyl-p-tyrosine reduced pituitary dopamine concentrations and also potentiated the serum gonadotropin response to taurine. Injection of monosodium glutamate caused an increase of glutamate content in the pituitary at 24 h; this was followed by a decrease at 72 h after administration. Pituitary GABA, taurine, and dopamine concentrations underwent a transient depletion after monosodium glutamate administration, and this was associated with an elevation of serum gonadotropin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Kaplan B  Dinçer S  Babül A  Duyar I 《Amino acids》2004,27(2):225-228
Summary. Taurine (2-aminoethane sulphonic acid), a sulphur-containing beta amino acid, is the most prevalent free intracellular amino acid in many human and animal tissues. Vitamin C metabolism is also fluenced by sulphur-containing amino acids. The aim of this study is to investigate the effect of taurine administration on the vitamin C levels of plasma and several tissues (brain, liver, kidneys) in mice with incisional skin wounds. Animals were divided into two as control and taurine groups. Taurine was freshly dissolved in sterile saline and administered daily (60µl, ip) for five days in the taurine group. At the end of the fifth day, the animals were killed by decapitation. The brain, liver and kidneys were immediately removed. Vitamin C levels were measured in plasma and several tissues. The administration of taurine had no effect on the plasma vitamin C levels (P>0.05) but significantly increased in liver and kidneys (P<0.001). In conclusion, taurine may affect the vitamin C metabolism in tissues by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号