首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.  相似文献   

3.
DNA methylation and repressive histone Histone3 Lysine9 (H3K9) dimethylation correlate with chromatin silencing in plants and mammals. To identify factors required for DNA methylation and H3K9 dimethylation, we screened for suppressors of the repressor of silencing1 (ros1) mutation, which causes silencing of the expression of the RD29A (RESPONSE TO DESSICATION 29A) promoter-driven luciferase transgene (RD29A-LUC) and the 35S promoter-driven NPTII (NEOMYCIN PHOSPHOTRANSFERASE II) transgene (35S-NPTII). We identified the folylpolyglutamate synthetase FPGS1 and the known factor DECREASED DNA METHYLATION1 (DDM1). The fpgs1 and ddm1 mutations release the silencing of both RD29A-LUC and 35S-NPTII. Genome-wide analysis indicated that the fpgs1 mutation reduces DNA methylation and releases chromatin silencing at a genome-wide scale. The effect of fpgs1 on chromatin silencing is correlated with reduced levels of DNA methylation and H3K9 dimethylation. Supplementation of fpgs1 mutants with 5-formyltetrahydrofolate, a stable form of folate, rescues the defects in DNA methylation, histone H3K9 dimethylation, and chromatin silencing. The competitive inhibitor of methyltransferases, S-adenosylhomocysteine, is markedly upregulated in fpgs1, by which fpgs1 reduces S-adenosylmethionine accessibility to methyltransferases and accordingly affects DNA and histone methylation. These results suggest that FPGS1-mediated folate polyglutamylation is required for DNA methylation and H3K9 dimethylation through its function in one-carbon metabolism. Our study makes an important contribution to understanding the complex interplay among metabolism, development, and epigenetic regulation.  相似文献   

4.
We have previously reported that nickel (Ni)-silenced expression of the URA3 gene in yeast (Saccharomyces cerevisiae) and gpt transgene in G12 Chinese hamster cells. In both cases, close proximity to a heterochromatic region was required for gene silencing. Yeast exposed to Ni exhibited reduced acetylation of the lysine residues in the N-terminal tail of histone H4. Ni-induced silencing of the gpt gene in mammalian cells involved hypermethylation of promoter region DNA. Yeast do not employ DNA methylation to silence gene expression. To determine if histone deacetylation participates in Ni-induced silencing of the URA3 and gpt genes, we exposed yeast and G12 hamster cells to the histone deacetylase inhibitor trichostatin A (TSA) prior to and concurrently with Ni. Treatment of yeast cells with 0.2-0.6mM NiCl(2) resulted in reduced expression of the URA3 gene as assessed by increased resistance to 1g/l 5-fluorotic acid (5-FOA). This effect was lessened when yeast were pre-treated with 50 microg TSA/ml. Similarly, treatment of G12 cells with 5 ng/ml TSA during and after exposure to 0.3 microg Ni(3)S(2)/cm(2) reduced silencing of the gpt gene as gauged by resistance to 10 microg/ml 6-thioguanine (6-TG). The ability of TSA alone and in combination with the DNA-demethylating agent (5-AzaC) to reactivate the gpt gene in Ni-silenced variants was also assessed. Although treatment with 100 ng/ml TSA for 48 h was partially effective in reactivating the gpt gene, treatment with 5 microM 5-AzaC was more efficacious. The greatest gpt gene reversion frequencies were observed following a sequential 5-AzaC/TSA treatment. Taken all together, our data from mammalian cells suggests that both DNA methylation and histone deacetylation participate in Ni-induced silencing of the gpt gene with DNA hypermethylation playing the more dominant role in maintaining the silenced state.  相似文献   

5.
6.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

7.
8.
9.
10.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

11.
12.
The precise mechanisms by which nickel and arsenic compounds exert their carcinogenic properties are not completely understood. In recent years, alterations of epigenetic mechanisms have been implicated in the carcinogenesis of compounds of these two metals. In vitro exposure to certain nickel or arsenic compounds induces changes in both DNA methylation patterns, as well as, in the levels of posttranslational modifications of histone tails. Changes in DNA methylation patterns have been reported in human subjects exposed to arsenic. Here we review our recent reports on the alterations in global levels of posttranslational histone modifications in peripheral blood mononuclear cells (PBMCs) of subjects with occupational exposure to nickel and subjects exposed to arsenic in their drinking water. Occupational exposure to nickel was associated with an increase in H3K4me3 and decrease in H3K9me2. A global increase in H3K9me2 and decrease in H3K9ac was found in subjects exposed to arsenic. Additionally, exposure to arsenic resulted in opposite changes in a number of histone modifications in males when compared with females in the arsenic population. The results of these two studies suggest that exposure to nickel or arsenic compounds, and possibly other carcinogenic metal compounds, can induce changes in global levels of posttranslational histone modifications in peripheral blood mononuclear cells.  相似文献   

13.
14.
The mechanisms that underlie metal carcinogenesis are the subject of intense investigation; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels – an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations.  相似文献   

15.
16.
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.  相似文献   

17.
18.
19.
20.
Epigenetic gene silencing suppresses transposon activity and is critical for normal development . Two common epigenetic gene-silencing marks are DNA methylation and histone H3 lysine 9 dimethylation (H3K9me2). In Arabidopsis thaliana, H3K9me2, catalyzed by the methyltransferase KRYPTONITE (KYP/SUVH4), is required for maintenance of DNA methylation outside of the standard CG sequence context. Additionally, loss of DNA methylation in the met1 mutant correlates with a loss of H3K9me2. Here we show that KYP-dependent H3K9me2 is found at non-CG methylation sites in addition to those rich in CG methylation. Furthermore, we show that the SRA domain of KYP binds directly to methylated DNA, and SRA domains with missense mutations found in loss-of-function kyp mutants have reduced binding to methylated DNA in vitro. These data suggest that DNA methylation is required for the recruitment or activity of KYP and suggest a self-reinforcing loop between histone and DNA methylation. Lastly, we found that SRA domains from two Arabidopsis SRA-RING proteins also bind methylated DNA and that the SRA domains from KYP and SRA-RING proteins prefer methylcytosines in different sequence contexts. Hence, unlike the methyl-binding domain (MBD), which binds only methylated-CpG sequences, the SRA domain is a versatile new methyl-DNA-binding motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号