首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report provides a characterization of the effects of varying the concentrations of Mg2+, ATP, phosphorylase kinase, and the cAMP-dependent protein kinase on the activation and phosphorylation of phosphorylase kinase. The results show the following. (a) The Km for MgATP2- for the cAMP-dependent protein kinase-catalyzed phosphorylation is decreased by increasing Mg2+, probably as a consequence of decreasing the free ATP:MgATP2- ratio and increasing free Mg2+. (b) Whereas beta subunit phosphorylation of phosphorylase kinase plays a prominent role in determining its activity, alpha subunit phosphorylation can also modulate activity. (c) The phosphorylation of the alpha subunit, which occurs following the initial cAMP-dependent phosphorylation of the beta subunit, is catalyzed by the cAMP-dependent protein kinase and is not a consequence of EGTA-insensitive (or EGTA-sensitive) autophosphorylation occurring as a result of the enhanced phosphorylase kinase activity. (d) The relationship between subunit phosphorylation and phosphorylase kinase activation is complex and particularly dependent upon concentrations of cAMP-dependent protein kinase and phosphorylase kinase in the activation reaction. The data suggest the possibilities that the pathway of phospho-intermediates involved in the activation process probably varies with the activation conditions, that the efficacy of a specific site to be covalently modified is dependent upon the phosphorylation status of other sites, and that the effect of phosphorylation in regulating activity may also be dependent on the phosphorylation status of other sites. It is clear from the data that the activation process for phosphorylase kinase can be very complex, and it is possible that this complexity might have significant physiological ramifications.  相似文献   

2.
J J Pernelle  C Creuzet  J Loeb  G Gacon 《FEBS letters》1991,281(1-2):278-282
In particulate fractions from LSTRA lymphoma cells, tyrosine phosphorylation of the lymphoid specific tyrosine kinase p56lck is elicited by Zn2+ in the absence of other divalent cations. Zn2+ alone also induces autophosphorylation of immunoprecipitated p56lck. The effect of Zn2+ is dose dependent; it is detected at concentrations of Zn2+ as low as 5 microM and reaches a maximum at 100 microM Zn2+. Among other divalent cations tested, Mn2+, and Co2+ to a lesser extent, were also effective. Zn2+ also stimulated p56lck phosphorylation in the presence of Mg2+ ions at physiological concentration, whereas orthovanadate had no effect. These results suggest that Zn2+ activates the autophosphorylation of p56lck; this fact could be related with the stimulating effect of Zn2+ in the activation of T lymphocytes.  相似文献   

3.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

4.
Insulin stimulates autophosphorylation of the beta subunit of its receptor and activates the associated tyrosine kinase. This kinase, in turn, phosphorylates a number of specific protein substrates; however, the functional and structural identity of these substrates is largely unknown. In this study, we demonstrate that insulin also stimulates the phosphorylation of calmodulin by rat hepatocyte insulin receptors partially purified by wheat germ agglutinin affinity chromatography. Phosphorylation occurred predominantly on tyrosine residues and had an absolute requirement for insulin receptors, divalent cations, and certain basic proteins. Maximal 32P incorporation was observed at an insulin concentration of 5 X 10(-9) M, and the K0.5 for insulin was approximately 4 X 10(-10) M. Phosphorylation of calmodulin was dependent upon ATP, saturating at 100 microM ATP with a K0.5 of 30 microM. Insulin-stimulated phosphorylation of calmodulin was also dependent upon Mg2+ or Mn2+, but was approximately 12-fold greater in the presence of Mg2+. Maximal phosphorylation was observed in the absence of Ca2+ and was inhibited at Ca2+:EGTA ratios greater than 0.8 (0.16 microM free Ca2+). Certain basic proteins, such as polylysine, histone Hf2b, and protamine sulfate, were necessary to observe insulin-stimulated phosphorylation of calmodulin. The relative amount of insulin-stimulated phosphorylation of calmodulin observed in the presence of each of these proteins differed. Maximal insulin-stimulated phosphorylation was observed in the presence of polylysine. These data suggest that both Ca2+ and calmodulin may participate in the early post-receptor events in the cellular mechanism of insulin action in hepatocytes.  相似文献   

5.
Phosphorylase kinase was found to be activated and phosphorylated at 10mM Mg2+ by the cAMP-dependent protein kinase-catalyzed reaction ot much higher levels than observed previously when reactions were carried out in 1 to 2 mM Mg2+ (Cohen, P. (1973) Eur. J. Biochem. 34, 1; Hayakawa, T., Perkin, J.P., and Krebs, E.G. (1973) Biochemistry 12, 574). That the reaction at 10 mM Mg2+ is protein kinase-catalyzed is supported by several observations: (a) the reaction is facilitated by the addition of protein kinase; (b) the reaction depends on cAMP when protein kinase holoenzyme is uded; (c) the reaction is not inhibited by 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetate which is known to inhibit autoactivation and autophosphorylation of phosphorylase kinase; and (d) the protein inhibitor of protein kinase inhibits this reaction. The phosphorylation and activation of phosphorylase kinase seem to occur in two phases. At low Mg2+ only the first phase is manifested and involves the incorporation of 2 mol of phosphate, 1 mol into each of Subunits A and B. At high Mg2+ additional sites are phosphorylated almost exclusively on Subunit A, with phosphate incorporation approaching the final level of 7 to 9 mol. Enzyme activity at high Mg2+ is 2 to 3 times higher than that observed when activation is studied at low Mg2+. The observation that both casein and type II histone are phosphorylated to the same extent at 1 mM and 10 mM Mg2+ suggested that high Mg2+ may be altering the conformation of phosphorylase kinase thus rendering more phosphorylation sites accessible to protein kinase. Since the phosphorylation of phosphorylase kinase by either the protein kinase-catalyzed or autocatalytic reaction can result in the incorporation of 7 to 9 mol of phosphate, the finding that only about seven sites become phosphorylated by both mechanisms acting together suggest that activation by these two mechanisms may involve common phosphorylation sites.  相似文献   

6.
A variety of proteases have been evaluated as potential structural and conformational probes of nonphosphorylated and phosphorylated phosphorylase kinase. In general, the enzyme's alpha subunit is rapidly degraded, followed in most cases by hydrolysis of the beta subunit; the gamma subunit is resistant to most proteases. Trypsin clearly distinguishes between the nonactivated and activated conformers of phosphorylase kinase, in that the beta subunit in phosphorylated enzyme, as opposed to nonphosphorylated enzyme, is markedly protected from tryptic attack. In contrast, only a small difference in the rates of proteolysis of the alpha subunit in phosphorylated and nonphosphorylated enzyme is seen, even when a protease is used that is highly selective for the alpha subunit, such as chymotrypsin or endoproteinase Arg C. Incubation of nonphosphorylated phosphorylase kinase with either Mg2+ or Ca2+, which are activating cations, also protects the beta subunit from tryptic hydrolysis, whereas Mn2+, which inhibits the kinase activity, has little effect on proteolysis. The allosteric activator ADP also causes the beta subunit to become refractory to trypsin and mimics the effects of phosphorylation. Similar effector-induced conformational changes in the beta subunit are also observed with enzyme in which the alpha subunit has previously been selectively destroyed. These data indicate that activation of phosphorylase kinase by dissimilar mechanisms is associated with a conformational change in the enzyme's beta subunit that is detectable by trypsin and confirm earlier studies from this laboratory employing a chemical cross-linker as a conformational probe for activated and nonactivated conformers of the enzyme (Fitzgerald, T. J., and Carlson, G. M. (1984) J. Biol. Chem. 259, 3266-3274).  相似文献   

7.
The potential correlations between phosphorylase kinase subunit phosphorylation and activation have been examined using 32P-perfused rat hearts exposed to a variety of hormonal stimuli. Phosphate incorporation was measured after isolation of the enzyme by immunoprecipitation from heart extracts. Time courses of catecholamine or glucagon treatment produced a rapid rise in both the activity and the beta subunit phosphorylation of the enzyme, and a slightly slower increase in alpha' subunit phosphorylation. For short durations of catecholamine stimulation, the ratio of phosphate in the alpha' versus beta subunit was dependent upon hormone dose. After removal of hormone, both inactivation and alpha' subunit dephosphorylation were fairly slow, while the beta subunit was dephosphorylated more rapidly. For all of the above conditions, activation correlated with both alpha' and beta subunit phosphorylation. The maximum level of phosphate incorporation observed in response to hormonal stimulation is estimated to be approximately 1.3-1.7 mol of [32P]phosphate/mol of (alpha' beta gamma delta)4, divided about equally between the alpha' and beta subunits. When hearts were treated with hormone either in the absence of added calcium or in the presence of a calcium channel blocker, the time courses of subunit phosphorylation and activation were similar to those seen with standard perfusion conditions, suggesting that if any Ca2+-dependent autophosphorylation of phosphorylase kinase were occurring it does not make a major contribution to the observed hormonal responses. The complicated relationships observed here between phosphorylase kinase subunit phosphorylation and activation for the most part provide physiological affirmation of the patterns observed in vitro, but they also show some possible differences of potential interest.  相似文献   

8.
When pig liver phosphorylase kinase was assayed at various concentrations of Mg2+, about 2-fold stimulation was observed around 2-3 mM Mg2+ (Mg2+/ATP ratio, 20-30) compared with the activity at 0.3 mM Mg2+ (Mg2+/ATP ratio, 3). This stimulation was specific for Mg2+ among the divalent cations tested and the process was reversible. Km values for ATP and phosphorylase b were decreased 3.6- and 9.5-fold, respectively, at 3 mM Mg2+ compared with those obtained at 0.3 mM Mg2+. These results indicate that the activity of liver phosphorylase kinase is influenced by free Mg2+.  相似文献   

9.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

10.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

11.
Equilibrium binding and activity studies indicate that adenosine 5'-diphosphate binds to phosphorylase kinase with high affinity at a site, or sites, distinct from the catalytic site. Equilibrium dialysis at pH 6.8 and 8.2, with and without Mg2+, and with phosphorylated and nonphosphorylated enzyme preparations revealed approximately 8 ADP binding sites per alpha 4 beta 4 gamma 4 delta 4 hexadecamer, with Kd values ranging from 0.26 to 17 microM. Decreasing the pH from 8.2 to 6.8 or removing the Mg2+ enhanced the affinity for ADP. At pH 6.8, ADP stimulated the phosphorylase conversion and autophosphorylation activities of the nonactivated enzyme. Analogs of ADP with modifications at the 2'-, 3'-, and 5'-positions allowed determination of structural requirements for the stimulation of activity. ADP seems to alter the conformation of the beta subunit because addition of the nucleotide inhibits its dephosphorylation by phosphoprotein phosphatase and its chemical cross-linking by 1,5-difluoro-2,4-dinitrobenzene. The binding affinities and effects of ADP suggest that it may function physiologically as an allosteric effector of phosphorylase kinase.  相似文献   

12.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

13.
A tyrosine-specific protein kinase from Ehrlich ascites tumor cells   总被引:2,自引:0,他引:2  
A protein tyrosine kinase that phosphorylates both alpha and beta subunits of inactivated (Na+,K+)-ATPase from dog kidney was purified about 500-fold from Ehrlich ascites tumor cell membranes. The enzyme required divalent cations Mn2+, Mg2+, or Fe2+ but was inhibited by Cu2+ or Zn2+. The purified enzyme phosphorylated the beta subunit about five times faster than the alpha subunit of the (Na+,K+)-ATPase. The random polymer poly(Glu80Tyr20) was an excellent substrate while casein was only marginally phosphorylated. In contrast, the purified transforming gene product of Rous sarcoma virus phosphorylated all three substrates and the (Na+,K+)-ATPase was preferentially phosphorylated on the alpha subunit. The transforming gene product of Fujinami sarcoma visue and EGF receptor kinase from A431 cells phosphorylated (Na+,K+)-ATPase poorly whereas casein was an excellent substrate. The molecular weight of the partially purified protein tyrosine kinase from Ehrlich ascites tumor cells determined by gel filtration was about 60,000. One of two major phosphorylated phosphopeptides resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis had an Mr of 60 kDa, thus suggesting that it might be the autophosphorylated protein tyrosine kinase. A phosphatase that hydrolyzes phosphorylated histones or poly(Glu80Tyr20) was partially purified from the same membrane.  相似文献   

14.
The synthesis of the gamma-32P-labeled diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) and the Sp isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) by a modification of the Glynn and Chappell method (Glynn, I. M., and Chappell, J. T., (1964) Biochem. J. 90, 147-149) is described. These analogs were tested as substrates for acetate kinase in the presence of several divalent metal ions. Both isomers of ATP alpha S are substrates in the presence of Mg2+, Mn2+, Co2+, Zn2+, and Cd2+, the Sp isomer being preferred by a factor of between 4.8 (Mg2+) and 52.5 (Cd2+). Only the Rp isomer of ATP beta S is a substrate in the presence of Mg2+, and the Sp isomer becomes a better substrate in the presence of Mn2+, Co2+, and Zn2+; both isomers are equally good substrates in the presence of Cd2+. The change in specificity upon replacing Mg2+ by Cd2+ is greater than 1800 at beta-phosphorus and 10 at alpha phosphorus. These results provide a basis for proposing that the lambda screw sense configuration of the beta, gamma-bidentate MgATP complex is the substrate for acetate kinase. In the reverse reaction, both Sp and Rp isomers of ADP alpha S are substrates in the presence of all metal ions tested, the Sp isomer preferred by a factor between 12.3 (Mg2+) and 45.5 (Cd2+). In the presence of Mg2+, Mn2+, and Co2+, only the Rp isomer of ATP beta S is synthesized from prochiral ADP beta S, while a mixture of Rp and Sp isomers is synthesized in the presence of Zn2+ and Cd2+. These results are analogous to those for the forward reaction and suggest that the Mg.ADP complex which binds as a substrate in the reverse reaction, and is released as a product in the forward reaction, is the beta-monodentate. The classification of acetate kinase as an enzyme having a type I mechanism (Dunaway-Mariano, D. and Cleland, W. W. (1980) Biochemistry 19, 1506-1515) for kinases, is discussed.  相似文献   

15.
Phosphorylase phosphatase isolated from rabbit skeletal muscle can be activated in several ways. Trypsin-Mn2+ treatment of the purified Mr = 70,000 complex or addition of Mn2+ alone to the isolated inactive catalytic subunit gives enzyme species that readily dephosphorylate phosphorylase a and the type 2 regulatory subunit of cAMP-dependent protein kinase as well as synthetic phosphopeptides corresponding to the phosphorylation sites of these proteins. In contrast, enzyme activated by phosphorylation of the regulatory subunit using factor FA (glycogen synthase kinase 3) and Mg2+-ATP and thought to be of physiological significance dephosphorylates the protein substrates but not the phosphopeptides. Likewise, the active catalytic subunit isolated following FA treatment could not act on the peptides unless Mn2+ ions (maximal effect at 250 microM) were added. Mg2+ and Ca2+ could not substitute for Mn2+. Such differences in substrate specificity are not seen with p-nitrophenyl phosphate which is dephosphorylated by all forms of the phosphatase. The results suggest that the primary sequence surrounding the phosphorylation site of the substrate is not all that is necessary for recognition by the FA-activated form of the enzyme. They are interpreted in terms of constraints within the enzyme that are relaxed following exposure to Mn2+ or by the additional determinants present in larger protein substrates.  相似文献   

16.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

17.
Protein kinase and its endogenous substrates in coated vesicles   总被引:3,自引:0,他引:3  
Coated vesicles prepared from bovine brains contained a protein kinase activity which catalyzed the phosphorylation of endogenous structural proteins, Mr 150 000, 120 000, 48 000 and 32 000. An endogenous protein, Mr 48 000 was most strongly phosphorylated by this kinase. This protein kinase also phosphorylated exogenous proteins, phosvitin intensely and casein slightly but not histone or protamine. The enzyme activity was independent of cyclic nucleotides or Ca2+/calmodulin. Mg2+ stimulated the kinase activity. Some divalent cations were substituted for Mg2+; the potency decreased in the order Mn2+, Mg2+, Co2+, Ca2+, Zn2+. Two separate subfractions, the outer coat and the inner vesicle (core), were prepared from coated vesicles by a urea treatment followed by sucrose density gradient centrifugation and dialysis. The kinase activity was found predominantly in the coat subfraction.  相似文献   

18.
The isolated glycogen particle provides a means to examine the regulation of glycogen metabolism with the components organized in a functional cellular complex. With this system, we have studied the control of phosphorylase kinase activation by Ca2+ and cAMP. Contrary to a previous report (Heilmeyer, L. M. G., Jr., Meyer, F., Haschke, R. H., and Fisher, E. H. (1980) J. Biol. Chem. 245, 6649-6656), phosphorylase kinase became activated during incubation of the glycogen particle with MgATP2- and Ca2+. Part of this activation could be attributed to the action of the cAMP-dependent protein kinase; however, it was not possible to quantitatively correlate activation with phosphorylation in the presence of Ca2+ and Mg2+ due to a large, but uncertain, contribution of synergistic activation caused by these ions. This latter activation had properties similar to those described by King and Carlson (King, M. M., and Carlson, G. M. (1980) Arch. Biochem. Biophys. 209, 517-523) with the purified enzyme, and its occurrence also explains why phosphorylase kinase activation in the glycogen particle was not observed previously. The cAMP-dependent activation of phosphorylase kinase in the glycogen particle has been characterized. It occurred in a similar manner when either the cAMP-dependent protein kinase or cAMP was added, thus indicating that the phosphorylation sites of phosphorylase kinase complexed in the glycogen particle were accessible to endogenous or exogenous enzyme. In the glycogen particle, both the alpha and beta subunits were phosphorylated by the cAMP-dependent protein kinase, but the alpha subunit dephosphorylation appeared to be preferentially regulated by Ca2+. The activity of phosphorylase kinase in the glycogen particle is regulated by the phosphorylation of both the alpha and beta subunits.  相似文献   

19.
Kinetic studies on the interaction of protein kinase C with cations and substrates were performed and the effects of essential activators on the interaction of protein kinase C with its substrates were studied. The catalytic fragment of protein kinase C interacted with protein substrate, MgATP, and Mg2+. The dual divalent cation requirement was shown by kinetic analysis as well as by the ability of Mn2+ to substitute for Mg2+. Analysis of kinetic data based on equilibrium assumptions suggested a random order of interaction of the catalytic fragment with its substrate and Mg2+ cofactor. Activation of intact protein kinase C required Ca2+, phosphatidylserine (PS), and diacylglycerol (DAG) as essential activators. Kinetic analysis of the interaction of activators with substrates indicated that Ca2+ and PS acted to increase the activity of the enzyme without modulating the KM for MgATP; PS and Ca2+ significantly decreased the KM for histone. DAG, on the other hand, did not affect the KM for either MgATP or histone but dramatically enhanced the kcat of the enzyme. These studies allow kinetic distinction between the effects of PS and Ca2+ on the one hand and DAG on the other. The possible interference of the kinetic analysis by histone was also examined by studying the requirements for autophosphorylation of protein kinase C; autophosphorylation showed similar dependencies on PS and DAG. There were no effects of histone on the lipid dependence of protein kinase C autophosphorylation, phorbol dibutyrate binding, and inhibition of autophosphorylation by sphingosine. These studies are discussed in relation to a kinetic model of protein kinase C activation.  相似文献   

20.
The structure of both the mono- and the divalent metal nucleotide complexes active in the myosin subfragment 1 ATPase has been determined using the phosphorothioate analogs of ATP in the presence of various cations. Both the Sp and the Rp diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) were substrates in the presence of Mg2+, Ca2+, Mn2+, Co2+, Zn2+, and Cd2+ as well as with NH4+ and T1+. The Sp/Rp activity ratios obtained were largely independent of the cation. The simplest explanation of these results is that both mono- and divalent cations do not coordinate to the alpha-phosphate group. With adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), essentially only the Sp diastereomer was active with Mg2+ with Sp/Rp ratio of greater 3000. As the divalent metal ion was varied in the series given above, this ratio was progressively lowered to the value of 0.2 found with Cd2+. Similar changes in stereoselectivity were seen with monovalent cations. Thus, with NH4+, an Sp/Rp ratio of 8 was observed, whereas with T1+, this figure was reduced to 0.04. These data indicate that both mono- and divalent cations coordinate to the beta-phosphate group of the nucleoside triphosphate substrate. These results obtained with ATP alpha S and ATP beta S suggest that myosin uses the mono- or divalent cation delta, beta, gamma-bidentate nucleotide chelate as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号