首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Apoptosis and necrosis are distinct forms of cell death that occur in response to various agents. We studied the action of N-Acetyl-D-sphingosine (C2-ceramide) or N-hexanoyl-D-sphyngosine (C6-ceramide) in human hepatoma HepG2 cell line. The cells were treated in vitro for 1–24 h. Cell toxicity was evaluated by MTT assay. DNA content was estimated by gel electrophoresis and flow cytometry. Measurement of mitochondrial respiration, analysis of cytochrome c release and caspase-3 activation were assessed in order to determine if either of these events in the induction of apoptosis and/or necrosis was predominant. We have demonstrated that C2 and C6-ceramide were cytotoxic in a time and dose-dependent manner. After 24 h of treatment with 100 M of C2 and C6 the morphology (May-Giemsa staining) of treated cells displayed an apoptotic phenotype in C6-treated cells, confirmed by a high (sub-G1 peak > 20%) proportion by flow cytometry while a necrotic morphology was observed after C2-ceramide treatment, confirmed by DNA smearing in DNA electrophoresis. After C6-ceramide incubation, the respiratory chain was functional only slightly inhibited (20%), there was production of ATP, cytochrome c release without ROS production, activation of caspase-3 and induction of apoptosis. On the contrary, C2-ceramide inhibit the respiratory chain more intensely (80%) increased significantly ROS production, which resulted in an arrest of ATP production, no cytochrome c release and absence of caspase-3 activation. Finally after complete exhaustion of intracellular ATP, mitochondrial explosion induce necrotic cell death. In conclusion, evidence suggest that mitochondrial respiratory chain function is essential for controlling the decision of the cell to enter a apoptotic or necrosis process.  相似文献   

2.
In rat cerebellar granule cells, cytochrome c release takes place during glutamate toxicity and apoptosis due to deprivation of depolarising levels of potassium. We show that, as in necrosis, the released cytochrome c present in the cytosolic fraction obtained from cerebellar granule cells undergoing apoptosis can operate as a reactive oxygen species (ROS) scavenger and as a respiratory substrate. The capability of the cytosolic fraction containing cytochrome c, obtained from cerebellar granule cells undergoing either necrosis or apoptosis, to energise coupled mitochondria isolated by the same cells is also investigated. We show that, in both cases, the cytosolic fraction containing cytochrome c, added to mitochondria, can cause proton ejection, and membrane potential generation and can drive ATP synthesis and export in the extramitochondrial phase, as photometrically measured via the ATP detecting system. Cytochrome c, separated immunologically from the cytosolic fraction of apoptotic cells when added to mitochondria, is found to cause proton ejection to generate membrane potential and to drive ATP synthesis and export in a manner not sensitive to the further addition of the cytosolic fraction depleted of cytochrome c, which failed to do this. In the light of these findings we propose that in apoptosis the released cytochrome c can contribute to provide ATP required for the cell programmed death to occur.  相似文献   

3.
We investigated ADP/ATP exchange mediated by the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore in homogenates from cerebellar granule cells en route to apoptosis induced by low potassium. We showed that, in the first 3 h of apoptosis, when maximum cytochrome c release had already occurred, adenine nucleotide translocator function was impaired owing to the action of reactive oxygen species, but no permeability transition pore opening occurred. Over 3-8 h of apoptosis, the permeability transition pore progressively opened, owing to caspase action, and further ADP/ATP translocator impairment occurred. The kinetics of transport and permeability transition pore opening were inversely correlated, both in the absence and presence of inhibitors of antioxidant and proteolytic systems. We conclude that, en route to apoptosis, alteration of the adenine nucleotide translocator occurs, resulting in permeability transition pore opening. This process depends on the action of caspase on pore component(s) other than the ADP/ATP translocator, because no change in either amount or molecular weight of the latter protein was noted during apoptosis, as measured by western blotting. Cell death occurs via apoptosis in the presence of cyclosporin A, the permeability transition pore inhibitor, thus showing that permeability transition pore opening, not needed for cytochrome c release, is also unnecessary for apoptosis to occur.  相似文献   

4.
Liu Y  Luo W 《Molecules and cells》2012,33(5):517-524
Betulinic acid (BetA) is an effective and potential anticancer chemical derived from plants. BetA can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of BetA on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia. In this study, we first showed that BetA can effectively kill CNE2 cells, a cell line derived from NPC. BetA-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release. Overexpression of Bcl-2 and Bcl-xL could partially prevent apoptosis caused by BetA. Moreover, Bax was not activated during the induction of apoptosis. Bax/Bak knockdown and wild-type CNE2 cells showed the same kinetics of cytochrome c release. We then showed that BetA may impair mitochondrial permeability transition pores (mPTPs), which may partially contribute to cytochrome c release. These observations suggest that BetA may serve as a potent and effective anticancer agent in NPC treatment. Further exploration of the mechanism of action of BetA could yield novel breakthroughs in anti-cancer drug discovery.  相似文献   

5.
Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.  相似文献   

6.
Concanavalin A (ConA), normally a mitogen of T-lymphocytes, was found to be a cell cycle-independent apoptosis-inducing agent in cultured murine macrophage PU5-1.8 cells. This assertion is based on the following observations: (1) ConA increased the number of cells with hypo-diploid DNA in a dose dependent manner as revealed by flow cytometry; (2) ConA elicited DNA fragmentation and the cytotoxicity of ConA was suppressed by -D-methylmannoside which blocks the lectin site of ConA; (3) ConA was able to release cytochrome c (cyto c) into the cytosol of PU5-1.8 cells. When isolated mitochondria were incubated with ConA, release of cyto c was observed too. Interestingly, clustering of mitochondria was found in the cytosol under a confocal microscope after ConA treatment. When cells were incubated with ConA-FITC and subsequently with mitotracker red (a probe for mitochondria), co-localization of fluorescence signals was observed. These results suggest that ConA was delivered to the mitochondria, induced mitochondrial clustering and released cyto c. Our results also show that introduction of exogenous cyto c electroporationally into ConA-untreated cells elicited DNA fragmentation. On the other hand, introduction of specific antibody against cyto c into PU5-1.8 cells suppressed the ConA-mediated cell death. Taken together, our results indicate that ConA induced apoptosis in PU5-1.8 cells through mitochondrial clustering and release of cyto c and the release of cyto c was sufficient to elicit apoptosis in PU5-1.8 cells.  相似文献   

7.
Although it is recognized that ATP plays a part in apoptosis, whether and how its level changes en route to apoptosis as well as how ATP is synthesized has not been fully investigated. We have addressed these questions using cultured cerebellar granule cells. In particular, we measured the content of ATP, ADP, AMP, IMP, inosine, adenosine and l-lactate in cells undergoing apoptosis during the commitment phase (0-8 h) in the absence or presence of oligomycin or/and of citrate, which can inhibit totally the mitochondrial oxidative phosphorylation and largely the substrate-level phosphorylation in glycolysis, respectively. In the absence of inhibitors, apoptosis was accompanied by an increase in ATP and a decrease in ADP with 1:1 stoichiometry, with maximum ATP level found at 3 h apoptosis, but with no change in levels of AMP and its breakdown products and with a relatively low level of l-lactate production. Consistently, there was an increase in the cell energy charge and in the ratio ([ATP][AMP])/[ADP]2. When the oxidative phosphorylation was completely blocked by oligomycin, a decrease of the ATP content was found both in control cells and in cells undergoing apoptosis, but nonetheless cells still died by apoptosis, as shown by checking DNA laddering and by death prevention due to actinomycin D. In this case, ATP was provided by anaerobic glycolysis, as suggested by the large increase of l-lactate production. On the other hand, citrate itself caused a small decrease in ATP level together with a huge decrease in l-lactate production, but it had no effect on cell survival. When ATP level was further decreased due to the presence of both oligomycin and citrate, death occurred via necrosis at 8 h, as shown by the lack of DNA laddering and by death prevention found due to the NMDA receptor antagonist MK801. However, at a longer time, when ATP level was further decreased, cells died neither via apoptosis nor via glutamate-dependent necrosis, in a manner similar to something like to energy catastrophe. Our results shows that cellular ATP content increases in cerebellar granule cell apoptosis, that the role of oxidative phosphorylation is facultative, i.e. ATP can also derive from anaerobic glycolysis, and that the type of cell death depends on the ATP availability.  相似文献   

8.
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explores the effects of extracellular ADP on low [K+]-induced apoptosis in rat cerebellar granule cells. ADP, released into the extracellular space in brain by multiple mechanisms, can interact with its receptor or be converted, through the actions of ectoenzymes, to adenosine. The findings reported in this paper demonstrate that ADP inhibits the proapoptotic stimulus supposedly via: i) inhibition of ROS production during early stages of apoptosis, an effect mediated by its interaction with cell receptor/s. This conclusion is validated by the increase in SOD and catalase activities as well as by the GSSG/GSH ratio value decrease, in conjunction with the drop of ROS level and the prevention of the ADP protective effect by pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a novel functionally selective antagonist of purine receptor; ii) safeguard of the functionality of the mitochondrial adenine nucleotide-1 translocator (ANT-1), which is early impaired during apoptosis. This effect is mediated by its plausible internalization into cell occurring as such or after its hydrolysis, by means of plasma membrane nucleotide metabolizing enzymes, and resynthesis into the cell. Moreover, the findings that ADP also protects ANT-1 from the toxic action of the two Alzheimer's disease peptides, i.e. Aβ1–42 and NH2htau, which are known to be produced in apoptotic cerebellar neurons, further corroborate the molecular mechanism of neuroprotection by ADP, herein proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号