首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sex determination master switch, Sex-lethal (Sxl), controls sexual development as a splicing and translational regulator. Hedgehog (Hh) is a secreted protein that specifies cell fate during development. We show that Sxl is in a complex that contains all of the known Hh cytoplasmic components, including Cubitus interruptus (Ci) the only known target of Hh signaling. Hh promotes the entry of Sxl into the nucleus in the wing disc. In the anterior compartment, the Hh receptor Patched (Ptc) is required for this effect, revealing Ptc as a positive effector of Hh. Some of the downstream components of the Hh signaling pathway also alter the rate of Sxl nuclear entry. Mutations in Suppressor of Fused or Fused with altered ability to anchor Ci are also impaired in anchoring Sxl in the cytoplasm. The levels, and consequently, the ability of Sxl to translationally repress downstream targets in the sex determination pathway, can also be adversely affected by mutations in Hh signaling genes. Conversely, overexpression of Sxl in the domain that Hh patterns negatively affects wing patterning. These data suggest that the Hh pathway impacts on the sex determination process and vice versa and that the pathway may serve more functions than the regulation of Ci.  相似文献   

2.
The Hedgehog (Hh) signal is transduced via Cubitus interruptus (Ci) to specify cell fates in the Drosophila wing. In the absence of Hh, the 155 kDa full-length form of Ci is cleaved into a 75 kDa repressor. Hh inhibits the proteolysis of full-length Ci and facilitates its conversion into an activator. Recently, it has been suggested that Hh promotes Ci nuclear import in tissue culture cells. We have studied the mechanism of Ci nuclear import in vivo and the relationship between nuclear import, stabilization and activation. We found that Ci rapidly translocates to the nucleus in cells close to the anteroposterior (AP) boundary and this rapid nuclear import requires Hh signaling. The nuclear import of Ci is regulated by Hh even under conditions in which Ci is fully stabilized. Furthermore, cells that exhibit Ci stabilization and rapid nuclear import do not necessarily exhibit maximal Ci activity. It has been previously shown that stabilization does not suffice for activation. Consistent with this finding, our results suggest that the mechanisms regulating nuclear import, stabilization and activation are distinct from each other. Finally, we show that cos2 and pka, two molecules that have been characterized primarily as negative regulators of Ci activity, also have positive roles in the activation of Ci in response to Hh.  相似文献   

3.
4.
5.
6.
7.
8.
The Hedgehog (Hh) and Epidermal growth factor receptor (EGFR) signaling pathways play critical roles in pattern formation and cell proliferation in invertebrates and vertebrates. In this study, we demonstrate a direct link between these two pathways in Drosophila melanogaster. Hh and EGFR signaling are each required for the formation of a specific region of the head of the adult fruitfly. We show that hh and vein (vn), which encodes a ligand of the Drosophila EGFR (Schnepp, B., Grumbling, G., Donaldson, T. and Simcox, A. (1996) Genes Dev. 10, 2302-13), are expressed in adjacent domains within the imaginal primordium of this region. Using loss- and gain-of-function approaches, we demonstrate that Hh activates vn expression. We also show that Hh activation of vn is mediated through the gene cubitus interruptus (ci) and that this activation requires the C-terminal region of the Ci protein. Finally, we demonstrate that wingless (wg) represses vn expression, thereby limiting the domain of EGFR signaling.  相似文献   

9.
The Hedgehog (Hh) family of secreted proteins governs many developmental processes in both vertebrates and invertebrates. In Drosophila, Hh acts by blocking the formation of a truncated repressor form of Cubitus interruptus (Ci) and by stimulating the nuclear translocation and activity of full-length Ci (Ci155). In the absence of Hh, Ci155 is sequestered in the cytoplasm by forming protein complexes with Costal2 (Cos2), Fused (Fu) and Suppressor of Fused [Su(fu)]. How complex formation regulates Ci155 subcellular localization is not clear. We find that Cos2 interacts with two distinct domains of Ci155, an amino (N)-terminal domain (CDN) and a carboxyl (C)-terminal domain (CORD), and Cos2 competes with Su(fu) for binding to the N-terminal region of Ci155. We provide evidence that both N- and C-terminal Cos2 binding domains are involved in the cytoplasmic retention of Ci155 in imaginal discs. Treating imaginal discs with microtubule-destabilizing reagent nocodazole promotes nuclear translocation of Ci155, suggesting that the microtubule network plays an important role in the cytoplasmic retention of Ci155. In addition, we find that adding a nuclear localization signal (NLS) to exposed regions of Ci155 greatly facilitates its nuclear translocation, suggesting that the cytoplasmic retention of Ci155 may also depend on NLS masking.  相似文献   

10.
Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Notch (N) signaling is used for cell-fate determination in many different developmental contexts. Here, we show that the master control gene for sex determination in Drosophila melanogaster, Sex-lethal (Sxl), negatively regulates the N-signaling pathway in females. In genetic assays, reducing Sxl activity suppresses the phenotypic effects of N mutations, while increasing Sxl activity enhances the effects. Sxl appears to negatively regulate the pathway by reducing N protein accumulation, and higher levels of N are found in Sxl(-) clones than in adjacent wild-type cells. The inhibition of N expression does not depend on the known downstream targets of Sxl; however, we find that Sxl protein can bind to N mRNAs. Finally, our results indicate that downregulation of the N pathway by Sxl contributes to sex-specific differences in morphology and suggest that it may also play an important role in follicle cell specification during oogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号