首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient membrane permeabilization by application of high electric field intensity pulses on cells (electropermeabilization) depends on several physical parameters associated with the technique (pulse intensity, number, and duration). In the present study, electropermeabilization is studied in terms of flow of diffusing molecules between cells and external medium. Direct quantification of the phenomenon shows that electric field intensity is a critical parameter in the induction of permeabilization. Electric field intensity must be higher than a critical threshold to make the membrane permeable. This critical threshold depends on the cell size. Extent of permeabilization (i.e., the flow rate across the membrane) is then controlled by both pulse number and duration. Increasing electric field intensity above the critical threshold needed for permeabilization results in an increase membrane area able to be permeabilized but not due to an increase in the specific permeability of the field alterated area. The electroinduced permeabilization is transient and disappears progressively after the application of the electric field pulses. Its life time is under the control of the electric field parameters. The rate constant of the annealing phase is shown to be dependent on both pulse duration and number, but is independent of electric field intensity which creates the permeabilization. The phenomenon is described in terms of membrane organization transition between the natural impermeable state and the electro-induced permeable state, phenomenon only locally induced for electric field intensities above a critical threshold and expanding in relation to both pulse number and duration.  相似文献   

2.
Time courses of electropermeabilization were analyzed during the electric field application using a rapid fluorescent imaging system. Exchanges of calcium ions through electropermeabilized membrane of Chinese hamster ovary cells were found to be asymmetrical. Entry of calcium ions during a millisecond pulse occurred on the anode-facing cell hemisphere. Entry through the region facing the cathode was observed only after the pulse. Leakage of intracellular calcium ions from electropermeabilized cell in low-calcium content medium was observed only from the anode-facing side. The exchanges during the pulse were mostly due to diffusion-driven processes, i.e., governed by the concentration gradient. Interaction of propidium iodide, a dye sensitive to the structural alteration of membrane, with cell membrane was asymmetrical during electropermeabilization. Localized enhancement of the dye fluorescence was observed during and after the pulsation on the cell surface. Specific staining of a limited anode-facing part of the membrane was observed as soon as the pulse was applied. The membrane fluorescence level increased during and immediately after the pulse whereas the geometry of the staining was unchanged. The membrane regions stained by propidium iodide were the same as those where calcium exchanges occurred. The fraction of the membrane on which structural alterations occurred was defined by the field strength. The density of defects was governed by the pulse duration. Electropermeabilization is a localized but asymmetrical process. The membrane defects are created unequally on the two cell sides during the pulse, implying a vectorial effect of the electric field on the membrane.  相似文献   

3.
Membrane electropermeabilization to small molecules depends on several physical parameters (pulse intensity, number, and duration). In agreement with a previous study quantifying this phenomenon in terms of flow (Rols and Teissié, Biophys. J. 58:1089-1098, 1990), we report here that electric field intensity is the deciding parameter inducing membrane permeabilization and controls the extent of the cell surface where the transfer can take place. An increase in the number of pulses enhances the rate of permeabilization. The pulse duration parameter is shown to be crucial for the penetration of macromolecules into Chinese hamster ovary cells under conditions where cell viability is preserved. Cumulative effects are observed when repeated pulses are applied. At a constant number of pulses/pulse duration product, transfer of molecules is strongly affected by the time between pulses. The resealing process appears to be first-order with a decay time linearly related to the pulse duration. Transfer of macromolecules to the cytoplasm can take place only if they are present during the pulse. No direct transfer is observed with a postpulse addition. The mechanism of transfer of macromolecules into cells by electric field treatment is much more complex than the simple diffusion of small molecules through the electropermeabilized plasma membrane.  相似文献   

4.
Electropermeabilization is a nonviral method used to transfer genes into living cells. Up to now, the mechanism is still to be elucidated. Since cell permeabilization, a prerequired for gene transfection, is triggerred by electric field, its characteristics should depend on its vectorial properties. The present investigation addresses the effect of pulse polarity and orientation on membrane permeabilization and gene delivery by electric pulses applied to cultured mammalian cells. This has been directly observed at the single-cell level by using digitized fluorescence microscopy. While cell permeabilization is only slightly affected by reversing the polarity of the electric pulses or by changing the orientation of pulses, transfection level increases are observed. These last effects are due to an increase in the cell membrane area where DNA interacts. Fluorescently labelled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable and is not affected by pulses of reversed polarities. Under such conditions, DNA interacts with the two sites of the cell facing the two electrodes. When changing both the pulse polarity and their direction, DNA interacts with the whole membrane cell surface. This is associated with a huge increase in gene expression. This present study demonstrates the relationship between the DNA/membrane surface interaction and the gene transfer efficiency, and it allows to define the experimental conditions to optimize the yield of transfection of mammalian cells.  相似文献   

5.
A fast and sensitive fluorescence image acquisition system is described which uses an ultra-low-light intensifying camera able to acquire digitised fluorescence images with a time resolution of 3.33 ms/image. Two modes of recording were employed. The synchronisation mode allowed acquisition of six successive 3.33 ms-images synchronised with an external trigger, while the memorisation mode allowed acquisition of twelve successive 3.33 ms images starting after a 20 ms-time lag from the external trigger. Interaction of ethidium bromide (EB) with the membrane of electropermeabilised living cells was studied using this imaging system. We observed enhanced fluorescence of the dye when associated with electropermeabilised cells. Using single cells, 3.33 ms-images of the fluorescence interaction patterns of ethidium bromide showed well-defined membrane labelling. The enhanced fluorescence patterns were shown to represent the electropermeabilised area of the cell membrane. The average level of fluorescence associated with the labelled part of the cell membrane increased linearly during and immediately (less than 7 ms) after the electropermeabilisation pulse. Steady-state EB interaction with the membrane was achieved in a maximum 20 ms-time lag after electropermeabilisation. The membrane labelled parts were always observed in the cell regions facing the electrodes. They were present only when the electric field strength was higher than a threshold value which was different for the two cell sides. An increase in electric field intensity led to an increase in the dimensions of the labelled cell region. Received: 7 August 1997 / Revised version: 14 November 1997 / Accepted: 15 January 1998  相似文献   

6.
Flow treatment of the yeast, Schizosaccharomyces pombe, with high intensity electric field pulses released intracellular enzymes such as glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. Over 70% of the total activity was liberated within 4 h after pulse application. The optimal field intensities were considerably higher than that needed for irreversible plasma membrane permeabilization.  相似文献   

7.
Electropermeabilization is a nonviral method successfully used to transfer genes into cells in vitro as in vivo. Although it shows promise in field of gene therapy, very little is known on the basic processes supporting the DNA transfer. The aim of the present investigation is to visualize gene electrotransfer and expression both in vitro and in vivo. In vitro studies have been performed by using digitized fluorescence microscopy. Membrane permeabilization occurs at the sides of the cell membrane facing the two electrodes. A free diffusion of propidium iodide across the membrane to the cytoplasm is observed in the seconds following electric pulses. Fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable over a few minutes. Changing the polarity and the orientation of the pulses lead to an increase in gene expression. In vivo experiments have been performed in Tibialis Cranialis mice muscle. Electric field application lead to the in vivo expression of plasmid DNA. We directly visualize gene expression of the Green Fluorescent Protein (GFP) on live animals. GFP expression is shown to be increased by applying electric field pulses with different polarities and orientations.  相似文献   

8.
Electropermeabilization designates the use of electric pulses to overcome the barrier of the cell membrane. This physical method is used to transfer anticancer drugs or genes into living cells. Its mechanism remains to be elucidated. A position-dependent modulation of the membrane potential difference is induced, leading to a transient and reversible local membrane alteration. Electropermeabilization allows a fast exchange of small hydrophilic molecules across the membrane. It occurs at the positions of the cell facing the two electrodes on an asymmetrical way. In the case of DNA transfer, a complex process is present, involving a key step of electrophoretically driven association of DNA only with the destabilized membrane facing the cathode. We report here at the membrane level, by using fluorescence microscopy, the visualization of the effect of the polarity and the orientation of electric pulses on membrane permeabilization and gene transfer. Membrane permeabilization depends on electric field orientation. Moreover, at a given electric field orientation, it becomes symmetrical for pulses of reversed polarities. The area of cell membrane where DNA interacts is increased by applying electric pulses with different orientations and polarities, leading to an increase in gene expression. Interestingly, under reversed polarity conditions, part of the DNA associated with the membrane can be removed, showing some evidence for two states of DNA in interaction with the membrane: DNA reversibly associated and DNA irreversibly inserted.  相似文献   

9.
The charging of the plasmalemma is a necessary condition for permeabilization of the plasma membrane (electroporation) in response to external electric field exposure. Common theories explain this permeabilization by formation of pores in the lipid bilayer. Using pulsed laser fluorescence microscopy, we measured the charging process of the membrane during the application of an external electric field with a temporal resolution of 5 ns. Visualization of the charging process of protoplasts plasma membrane (Nicotiana tabacum Bright Yellow 2) was achieved by staining of the plasma membrane with the voltage-sensitive fluorescent dye ANNINE-6. Measurements on membranes exhibiting negligible membrane permeabilization confirm the sine-shaped azimuthal distribution of the membrane voltage predicted by the relation of Cole. At higher membrane voltages, enhanced pore formation allows for the exchange of charge carriers, leading to deviations from the sine-shaped curve progression, i.e., a saturation of the membrane voltage at membrane segments facing the electrodes. Additionally, measurements on protoplasts exposed to multiple successive pulses indicate that the recovery of the membrane seems to be a fast process, occurring within seconds after termination of the external electric field pulse.  相似文献   

10.
An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a cell suspension was studied by current-voltage measurements during and impedance measurement before and after the pulse application. At the same time the percentage of permeabilized and survived cells was determined and the extent of osmotic swelling measured. For a train of eight pulses a transient increase in conductivity of a cell suspension was obtained above permeabilization threshold in low- and high-conductive medium with complete relaxation in <1 s. Total conductivity changes and impedance measurements showed substantial changes in conductivity due to the ion efflux in low-conductive medium and colloid-osmotic swelling in both media. Our results show that by measuring electric conductivity during the pulses we can detect limit permeabilization threshold but not directly permeabilization level, whereas impedance measurements in seconds after the pulse application are not suitable.  相似文献   

11.
For the evaluation of cell membrane electropermeabilization, cells are usually exposed to electric pulses in the presence of propidium iodide, a fluorescent dye activated by binding to cellular DNA. The fraction of permeabilized cells is then determined using a flow cytometer. This widely established method has several drawbacks: (i) an arbitrary choice of minimum fluorescence intensity for characterization of permeabilized cells; (ii) the inability to detect cells disintegrated because of intense electropermeabilization; and (iii) false detection of cellular ghosts devoid of fluorescence because of leakage of DNA caused by electropermeabilization. Here, we present a simple and inexpensive method that eliminates these drawbacks. The method is based on the use of a cytotoxic agent that cannot permeate through an intact plasma membrane and thus leads to selective death of the electropermeabilized cells. The amount of nonpermeabilized cells is then determined by a suitable viability test. Bleomycin at a 5-nM concentration causes no statistically significant effect on cell survival in the absence of electric pulses, yet this concentration is sufficient for lethal toxicity in electropermeabilized cells. The amount of cells surviving the exposure relative to the control gives a reliable value of the fraction of nonpermeabilized cells.  相似文献   

12.
The exclusion of polar dyes by healthy cells is widely employed as a simple and reliable test for cell membrane integrity. However, commonly used dyes (propidium, Yo-Pro-1, trypan blue) cannot detect membrane defects which are smaller than the dye molecule itself, such as nanopores that form by exposure to ultrashort electric pulses (USEPs). Instead, here we demonstrate that opening of nanopores can be efficiently detected and studied by fluorescent measurement of Tl+ uptake. Various mammalian cells (CHO, GH3, NG108), loaded with a Tl+-sensitive fluorophore FluxOR™ and subjected to USEPs in a Tl+-containing bath buffer, displayed an immediate (within <100 ms), dose-dependent surge of fluorescence. In all tested cell lines, the threshold for membrane permeabilization to Tl+ by 600-ns USEP was at 1–2 kV/cm, and the rate of Tl+ uptake increased linearly with increasing the electric field. The lack of concurrent entry of larger dye molecules suggested that the size of nanopores is less than 1–1.5 nm. Tested ion channel inhibitors as well as removal of the extracellular Ca2+ did not block the USEP effect. Addition of a Tl+-containing buffer within less than 10 min after USEP also caused a fluorescence surge, which confirms the minutes-long lifetime of nanopores. Overall, the technique of fluorescent detection of Tl+ uptake proved highly effective, noninvasive and sensitive for visualization and analysis of membrane defects which are too small for conventional dye uptake detection methods.  相似文献   

13.
It is widely accepted that electroporation occurs when the cell transmembrane voltage induced by an external applied electric field reaches a threshold. Under this assumption, in order to trigger electroporation in a spherical cell, Schwan’s equation leads to an inversely proportional relationship between the cell radius and the minimum magnitude of the applied electric field. And, indeed, several publications report experimental evidences of an inverse relationship between the cell size and the field required to achieve electroporation. However, this dependence is not always observed or is not as steep as predicted by Schwan’s equation. The present numerical study attempts to explain these observations that do not fit Schwan’s equation on the basis of the interplay between cell membrane conductivity, permeability, and transmembrane voltage. For that, a single cell in suspension was modeled and the electric field necessary to achieve electroporation with a single pulse was determined according to two effectiveness criteria: a specific permeabilization level, understood as the relative area occupied by the pores during the pulse, and a final intracellular concentration of a molecule due to uptake by diffusion after the pulse, during membrane resealing. The results indicate that plausible model parameters can lead to divergent dependencies of the electric field threshold on the cell radius. These divergent dependencies were obtained through both criteria and using two different permeabilization models. This suggests that the interplay between cell membrane conductivity, permeability, and transmembrane voltage might be the cause of results which are noncompatible with the Schwan’s equation model.  相似文献   

14.
Cells can be transiently permeabilized by exposing them briefly to an intense electric field (a process called "electroporation"), but it is not clear what structural changes the electric field induces in the cell membrane. To determine whether membrane pores are actually created in the electropermeabilized cells, rapid-freezing electron microscopy was used to examine human red blood cells which were exposed to a radio-frequency electric field. Volcano-shaped membrane openings appeared in the freeze-fracture faces of electropermeabilized cell membranes at intervals as short as 3 ms after the electrical pulse. We suggest that these openings represent the membrane pathways which allow entry of macromolecules (such as DNA) during electroporation. The pore structures rapidly expand to 20-120 nm in diameter during the first 20 ms of electroporation, and after several seconds begin to shrink and reseal. The distribution of pore sizes and pore dynamics suggests that interactions between the membrane and the submembrane cytoskeleton may have an important role in the formation and resealing of pores.  相似文献   

15.
Mouse myeloma cells were electropermeabilized by single square-wave electric pulses with amplitudes of up to ∼150 kV/cm and durations of 10–100 nsec. The effects of the field intensity, pulse duration and medium conductivity on cell viability and field-induced uptake of molecules were analyzed by quantitative flow cytometry using the membrane-impermeable fluorescent dye propidium iodide as indicator molecule. Despite the extremely large field strengths, the majority of cells survived the exposure to ultra-short field pulses. The electrically induced dye uptake increased markedly with decreasing conductivity of the suspending medium. We assigned this phenomenon to the transient electrodeformation (stretching) force that assumes its maximum value if cells are suspended in low-conductivity media, i.e., if the external conductivity σe is smaller than that of the cytosol σi. The stretching force vanishes when σe is equal to or larger than σi. Due to their capability of delivering extremely large electric fields, the pulse power systems used here appear to be a promising tool for the electropermeabilization of very small cells and vesicles (including intracellular organelles, liposomes, etc.). Received: 15 May 2001/Revised: 20 July 2001  相似文献   

16.
We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.  相似文献   

17.
This paper investigates the influence of cell density on cell membrane electropermeabilization. The experiments were performed on dense cell suspensions (up to 400 × 106 cells/ml), which represent a simple model for studying electropermeabilization of tissues. Permeabilization was assayed with a fluorescence test using Propidium iodide to obtain the mean number of permeabilized cells (i.e. fluorescence positive) and the mean fluorescence per cell (amount of loaded dye). In our study, as the cell density increased from 10 × 106 to 400 × 106 cells/ml, the fraction of permeabilized cells decreased by approximately 50%. We attributed this to the changes in the local electric field, which led to a decrease in the amplitude of the induced transmembrane voltage. To obtain the same fraction of cell permeabilization in suspensions with 10 × 106 and 400 × 106 cells/ml, the latter suspension had to be permeabilized with higher pulse amplitude, which is in qualitative agreement with numerical computations. The electroloading of the cells also decreased with cell density. The decrease was considerably larger than expected from the differences in the permeabilized cell fractions alone. The additional decrease in fluorescence was mainly due to cell swelling after permeabilization, which reduced extracellular dye availability to the permeabilized membrane and hindered the dye diffusion into the cells. We also observed that resealing of cells appeared to be slower in dense suspensions, which can be attributed to cell swelling resulting from electropermeabilization.  相似文献   

18.
The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect to the electric field direction, both numerically and analytically. Changing the orientation of the cells decreases the induced transmembrane potential from its maximum value when the longest axis of the cell is parallel to the electric field, to its minimum value when the longest axis of the cell is perpendicular to the electric field. The dependency on orientation is more pronounced for elongated cells while it is negligible for spherical cells. The part of the cell membrane where a threshold transmembrane potential is exceeded represents the area of electropermeabilization, i.e. the membrane area through which the transport of molecules is established. Therefore the surface exposed to the transmembrane potential above the threshold value was calculated. The biological relevance of these theoretical results was confirmed with experimental results of the electropermeabilization of plated Chinese hamster ovary cells, which are elongated. Theoretical and experimental results show that permeabilization is not only a function of electric field intensity and cell size but also of cell shape and orientation.  相似文献   

19.
The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.  相似文献   

20.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号