首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of Entamoeba histolytica were glucosylated by Clostridium difficile toxin B and Clostridium novyi alpha-toxin. In contrast, Clostridium difficile toxin A, which shares the same mammalian protein substrates with toxin B, did not modify EhRho1. Change of threonine 52 of EhRho1 to alanine prevented glucosylation by toxin B from Clostridium difficile and by alpha-toxin from Clostridium novyi, which suggests that the equivalent threonine residues are glucosylated in mammalian and Entamoeba Rho GTPases. Lethal toxin from Clostridium sordellii did not glucosylate EhRho1 but labeled several other substrate proteins in lysates from Entamoeba histolytica in the presence of UDP-[14C]glucose.  相似文献   

2.
The large cytotoxins of Clostridia species glycosylate and thereby inactivate small GTPases of the Rho family. Clostridium difficile toxins A and B and Clostridium sordellii lethal toxin use UDP-glucose as the donor for glucosylation of Rho/Ras GTPases. In contrast, alpha-toxin from Clostridium novyi N-acetylglucosaminylates Rho GTPases by using UDP-N-acetylglucosamine as a donor substrate. Based on the crystal structure of C. difficile toxin B, we studied the sugar donor specificity of the toxins by site-directed mutagenesis. The changing of Ile-383 and Gln-385 in toxin B to serine and alanine, respectively, largely increased the acceptance of UDP-N-acetylglucosamine as a sugar donor for modification of RhoA. The K(m) value was reduced from 960 to 26 mum for the double mutant. Accordingly, the potential of the double mutant of toxin B to hydrolyze UDP-N-acetylglucosamine was higher than that for UDP-glucose. The changing of Ile-383 and Gln-385 in the lethal toxin of C. sordellii allowed modification of Ras in the presence of UDP-N-acetyl-glucosamine and reduced the acceptance of UDP-glucose as a donor for glycosylation. Vice versa, the changing of the equivalent residues in C. novyi alpha-toxin from Ser-385 and Ala-387 to isoleucine and glutamine, respectively, reversed the donor specificity of the toxin from UDP-N-acetylglucosamine to UDP-glucose. These data demonstrate that two amino acid residues are crucial for the co-substrate specificity of clostridial glycosylating toxins.  相似文献   

3.
The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engages a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.  相似文献   

4.
The small GTPases Rho, Rac, and Cdc42 are monoglucosylated at effector domain amino acid threonine 37/35 by Clostridium difficile toxins A and B. Glucosylation renders the Rho proteins inactive by inhibiting effector coupling. To understand the functional consequences, effects of glucosylation on subcellular distribution and cycling of Rho GTPases between cytosol and membranes were analyzed. In intact cells and in cell lysates, glucosylation leads to a translocation of the majority of RhoA GTPase to the membranes whereas a minor fraction is monomeric in the cytosol without being complexed with the guanine nucleotide dissociation inhibitor (GDI-1). Rho complexed with GDI-1 is not substrate for glucosylation, and modified Rho does not bind to GDI-1. However, a membranous factor inducing release of Rho from the GDI complex makes cytosolic Rho available as a substrate for glucosylation. The binding of glucosylated RhoA to the plasma membranes is saturable, competable with unmodified Rho-GTPgammaS guanosine 5'-O-(3-thiotriphosphate), and takes place at a membrane protein with a molecular mass of about 70 kDa. Membrane-bound glucosylated Rho is not extractable by GDI-1 as unmodified Rho is, leading to accumulation of modified Rho at membranous binding sites. Thus, in addition to effector coupling inhibition, glucosylation also inhibits Rho cycling between cytosol and membranes, a prerequisite for Rho activation.  相似文献   

5.
Rho GTPases are the preferred targets of various bacterial cytotoxins, including Clostridium difficile toxins A and B, Clostridium sordellii lethal toxin, the cytotoxic necrotizing factors (CNF1) from Escherichia coli, and the dermonecrotizing toxin (DNT) from Bordetella species. The toxins inactivate or activate specific sets of Rho GTPases by mono-O-glucosylation and deamidation/transglutamination, respectively. Here we studied the structural basis of the recognition of RhoA, which is modified by toxin B, CNF1, and DNT, in comparison with RhoD, which is solely a substrate for lethal toxin. We found that a single amino acid residue in RhoA and RhoD defines the substrate specificity for toxin B and lethal toxin. Change of serine 73 to phenylalanine in RhoA turned RhoA into a substrate for lethal toxin. Accordingly, change of the equivalently positioned phenylalanine 85 in RhoD with serine allowed glucosylation by toxin B. Comparable results were achieved with the Rho-activating and transglutaminating enzymes CNF1 and DNT. Here, amino acid glutamate 64 of RhoA and the equivalent aspartate 76 of RhoD define substrate specificity for CNF1 and DNT, respectively. These data indicate that single amino acid residues located in the switch II region of Rho proteins determine enzyme specificity for diverse bacterial toxins.  相似文献   

6.
Small GTP-binding Rho GTPases regulate important signaling pathways in endothelial cells, but little is known about their role in endothelial cell apoptosis. Clostridial cytotoxins specifically inactivate GTPases by glucosylation [Clostridium difficile toxin B-10463 (TcdB-10463), C. difficile toxin B-1470 (TcdB-1470)] or ADP ribosylation (C. botulinum C3 toxin). Exposure of human umbilical cord vein endothelial cells (HUVEC) to TcdB-10463, which inhibits RhoA/Rac1/Cdc42, or to C3 toxin, which inhibits RhoA, -B, -C, resulted in apoptosis, whereas inactivation of Rac1/Cdc42 with TcdB-1470 was without effect, suggesting that Rho inhibition was responsible for endothelial apoptosis. Disruption of endothelial microfilaments as well as inhibition of p160ROCK did not induce endothelial apoptosis. Exposure to TcdB-10463 resulted in activation of caspase-9 and -3 but not caspase-8 in HUVEC. Moreover, Rho inhibition reduced expression of antiapoptotic Bcl-2 and Mcl-1 and increased proapoptotic Bid but had no effect on Bax or FLIP protein levels. Caspase-3 activity and apoptosis induced by TcdB-10463 were abolished by cAMP elevation. In summary, inhibition of Rho in endothelial cells activates caspase-9- and -3-dependent apoptosis, which can be antagonized by cAMP elevation.  相似文献   

7.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

8.
Clostridium sordellii lethal toxin and Clostridium novyi α-toxin, which are virulence factors involved in the toxic shock and gas gangrene syndromes, are members of the family of clostridial glucosylating toxins. The toxins inactivate Rho/Ras proteins by glucosylation or attachment of GlcNAc (α-toxin). Here, we studied the activation of the autoproteolytic processing of the toxins by inositol hexakisphosphate (InsP(6)) and compared it with the processing of Clostridium difficile toxin B. In the presence of low concentrations of InsP(6) (<1 μM), toxin fragments consisting of the N-terminal glucosyltransferase (or GlcNAc-transferase) domains and the cysteine protease domains (CPDs) of C. sordellii lethal toxin, C. novyi α-toxin, and C. difficile toxin B were autocatalytically processed. The cleavage sites of lethal toxin (Leu-543) and α-toxin (Leu-548) and the catalytic cysteine residues (Cys-698 of lethal toxin and Cys-707 of α-toxin) were identified. Affinity of the CPDs for binding InsP(6) was determined by isothermal titration calorimetry. In contrast to full-length toxin B and α-toxin, autocatalytic cleavage and InsP(6) binding of full-length lethal toxin depended on low pH (pH 5) conditions. The data indicate that C. sordellii lethal toxin and C. novyi α-toxin are InsP(6)-dependently processed. However, full-length lethal toxin, but not its short toxin fragments consisting of the glucosyltransferase domain and the CPD, requires a pH-sensitive conformational change to allow binding of InsP(6) and subsequent processing of the toxin.  相似文献   

9.
The Entamoeba histolytica small GTP-binding protein EhRho1 has an unusual amino acid residue at a conserved site found in all known Ras superfamily proteins. EhRho1 has an isoleucine at position 45, which corresponds to position 28 of human Ras and Rac and position 30 of human Rho and Cdc42. All other known small GTPases have an aromatic residue (typically phenylalanine) at this position, and mutation to a leucine renders other Ras proteins constitutively active by reason of diminished affinity for GDP. It was determined that the EhRho1 protein has a half-time of GDP dissociation similar to that of a human Rho protein, HsRhoA, and therefore an isoleucine at this site in EhRho1 is not likely to render EhRho1 constitutively active. It was also found that EhRho1 is not a substrate for the Rho-specific C3 exoenzyme. Thus EhRho1 appears to be an unusual member of the Ras family.  相似文献   

10.
Clostridium difficile toxin B (269 kDa), which is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis, inactivates Rho GTPases by glucosylation. Here we studied the uptake and membrane interaction of the toxin with eukaryotic target cells. Bafilomycin A1, which prevents acidification of endosomal compartments, blocked the cellular uptake of toxin B in Chinese hamster ovary cells cells. Extracellular acidification (pH 相似文献   

11.
Clostridium difficile toxin A monoglucosylates the Rho family GTPases Rho, Rac, and Cdc42. Glucosylation leads to the functional inactivation of Rho GTPases and causes disruption of the actin cytoskeleton. A cDNA microarray revealed the immediate early gene rhoB as the gene that was predominantly up-regulated in colonic CaCo-2 cells after treatment with toxin A. This toxin A effect was also detectable in epithelial cells such as HT29 and Madin-Darby canine kidney cells, as well as NIH 3T3 fibroblasts. The expression of RhoB was time-dependent and correlated with the morphological changes of cells. The up-regulation of RhoB was approximately 15-fold and was based on the de novo synthesis of the GTPase because cycloheximide completely inhibited the toxin A effect. After 8 h, a steady state was reached, with no further increase in RhoB. The p38 MAPK inhibitor SB202190 reduced the expression of RhoB, indicating a participation of the p38 MAPK in this stress response. Surprisingly, newly formed RhoB protein was only partially glucosylated by toxin A, sparing a pool of potentially active RhoB, as checked by sequential C3bot-catalyzed ADP-ribosylation. A pull-down assay in fact revealed a significant amount of active RhoB in toxin A-treated cells that was not present in control cells. We demonstrate for the first time that toxin A has not only the property to inactivate the GTPases RhoA, Rac1, and Cdc42 by glucosylation, but it also has the property to generate active RhoB that likely contributes to the overall picture of toxin treatment.  相似文献   

12.
The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between "reference" TcdB-10463 and Clostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-Ras was identified as a target for TcdB-1470 and also for TcsL-1522 but not for TcdB-10463. R-Ras is known to control integrin-extracellular matrix interactions from inside the cell. Its glucosylation may be a major determinant for the cell rounding and detachment induced by the two R-Ras-attacking toxins. In contrast, fibroblasts treated with TcdB-10463 were arborized and remained attached, with phosphotyrosine containing structures located at the cell-to-cell contacts and beta3-integrin remaining at the tips of cellular protrusions. These components were absent from cells treated with the R-Ras-inactivating toxins. The novel hybrid toxin will broaden the utility of the LCTs for clarifying the functions of several small GTPases, now including also R-Ras.  相似文献   

13.
Clostridial glucosylating cytotoxins, including Clostridium difficile toxins A and B, Clostridium novyi α-toxin, and Clostridium sordellii lethal toxin, are major virulence factors and causative agents of human diseases. These toxins mono-O-glucosylate (or mono-O-GlcNAcylate) a specific threonine residue of Rho/Ras-proteins, which is essential for the function of the molecular switches. Recently, a related group of glucosyltransferases from Legionella pneumophila has been identified. These Legionella glucosyltransferases modify the large GTPase elongation factor eEF1A at a serine residue by mono-O-glucosylation, thereby inhibiting protein synthesis of target cells. Recent results on structures, functions and biological roles of both groups of bacterial toxin glucosyltransferases will be discussed.  相似文献   

14.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

15.
Large clostridial cytotoxins catalyze the glucosylation of Rho/Ras GTPases using UDP-glucose as a cosubstrate. By site-directed mutagenesis of Clostridium sordellii lethal toxin and Clostridium difficile toxin B fragments, we identified tryptophan 102, which is located in a conserved region within the catalytic domain of all clostridial cytotoxins, to be crucial for UDP-glucose binding. Exchange of Trp-102 with alanine decreased the glucosyltransferase activity by about 1,000-fold and blocked cytotoxic activity after microinjection. Replacement of Trp-102 by tyrosine caused a 100-fold reduction in enzyme activity, indicating a partial compensation of the tryptophan function by tyrosine. Decrease in glucosyltransferase and glycohydrolase activity was caused predominantly by an increase in the K(m) for UDP-glucose of these mutants. The data indicate that the conserved tryptophan residue is implicated in the binding of the cosubstrate UDP-glucose by large clostridial cytotoxins. Data bank searches revealed different groups of proteins sharing the recently identified DXD motif (Busch, C., Hofmann, F., Selzer, J., Munro, J., Jeckel, D., and Aktories, K. (1998) J. Biol. Chem. 273, 19566-19572) and a conserved region defined by a tryptophan residue equivalent to Trp-102 of C. sordellii lethal toxin. From our findings, we propose a novel family of glycosyltransferases which includes both prokaryotic and eukaryotic proteins.  相似文献   

16.
Small GTP-binding Rho proteins are involved in signalling, cell polarity, membrane outgrowths and actin stabilization in eukaryotes. Known plant homologues represent essentially the Rac subfamily and an original Rop (Rho in pollen). Mammalian Rho proteins are preferential targets of clostridial toxins. In alfalfa (Medicago sativa L.) cells, Clostridium botulinum C3-exoenzyme (C3) provoked disassembly of the actin cytoskeleton, similar to its effect in mammalian cells. In alfalfa proteins, several epitopes appear to be recognized by commercial antibodies raised against peptides characteristic for human Rho. One ≈ 40-kDa band was detected immunologically by anti-RhoB: a protein of this size was ADP-ribosylated by C3 and glucosylated in vitro by Clostridium difficile toxin B, without interference between the two nor from phosphatidyl inositide. C3 was also active upon a 34-kDa band which contained protein(s) immunoreactive with anti-Rac2 and which bound [γ35S]-GTP, but was glucosylated by neither toxin B nor Clostridium sordellii Lethal Toxin. An 18-kDa band detected by [γ35S]-GTP overlay was immunologically recognized by anti-Rac1. Anti-Cdc42Hs recognized a 54-kDa band. Substrates to toxin B and C3 were purified from alfalfa cell culture and partially sequenced: they included two proteins, P40 and P41, of ≈ 40 kDa (by SDS-electrophoresis). P40 appears to constitute a tetrameric aldolase (160 kDa by gel filtration; EC 4.1.2.13) whose activity is partially inhibited by toxin B and the anti-RhoB.  相似文献   

17.
Here we report data describing some principles of the interaction between small GTP-binding proteins and large Clostridial cytotoxins (LCTs). Our investigation was based on the differential glucosylation of Rac1 versus RhoA by LCTs TcsL-1522, TcdB-1470 and TcdB-8864. Chimeric RhoA/Rac1 proteins and GTPases mutated at defined regions or single amino acids were used as substrates. Starting with chimeric Rac/Rho proteins we demonstrated that proteins containing the N-terminal 73 amino acids of Rac1 (but not those of RhoA) were efficiently glucosylated. Within this stretch, three regions differ significantly in Rac1 and RhoA. Regions containing amino acids 41-45 and 50-54 had no effect on toxin induced glucosylation, whereas amino acids 22-27 had a drastic impact on the potential of all three toxins to covalently modify the GTPases. Point mutations K25T of RhoA (numbering according to Rac1) and K27A of Cdc42 significantly increased glucosylation by the cytotoxins; introduction of lysines at the equivalent positions of Rac1 hindered modification. Our experiments demonstrate the influence of this charged residue on GTPase-LCT interactions. Amino acids 22-27 are part of the transition between the alpha1-helix to the switch I region of small GTP-binding proteins; both are known structures for specificity determination of the interactions with physiologic partners. Comparing these structures with data from our investigation we suggest that TcsL-1522, TcdB-1470 and TcdB-8864 mimic aspects of the physiologic interactions of small GTP-binding proteins.  相似文献   

18.
Rho, Rac, and Cdc42 monomeric GTPases are well known regulators of the actin cytoskeleton and phosphoinositide metabolism and have been implicated in hormone secretion in endocrine cells. Here, we examine their possible implication in Ca(2+)-dependent exocytosis of neurotransmitters. Using subcellular fractionation procedures, we found that RhoA, RhoB, Rac1, and Cdc42 are present in rat brain synaptosomes; however, only Rac1 was associated with highly purified synaptic vesicles. To determine the synaptic function of these GTPases, toxins that impair Rho-related proteins were microinjected into Aplysia neurons. We used lethal toxin from Clostridium sordellii, which inactivates Rac; toxin B from Clostridium difficile, which inactivates Rho, Rac, and Cdc42; and C3 exoenzyme from Clostridium botulinum and cytotoxic necrotizing factor 1 from Escherichia coli, which mainly affect Rho. Analysis of the toxin effects on evoked acetylcholine release revealed that a member of the Rho family, most likely Rac1, was implicated in the control of neurotransmitter release. Strikingly, blockage of acetylcholine release by lethal toxin and toxin B could be completely removed in <1 s by high frequency stimulation of nerve terminals. Further characterization of the inhibitory action produced by lethal toxin suggests that Rac1 protein regulates a late step in Ca(2+)-dependent neuroexocytosis.  相似文献   

19.
Rho GTPases are critical elements involved in the regulation of signal transduction cascades from extracellular stimuli to cytoskeleton. The Rho guanine nucleotide exchange factors (RhoGEFs) have been implicated in direct activation of these GTPases. Here, we describe a novel RhoGEF, denominated EhGEF3 from the parasite Entamoeba histolytica, which encodes a 110 kDa protein containing the domain arrangement of a Dbl homology domain in tandem with a pleckstrin homology domain, the DH domain of EhGEF3 is closely related with the one of the Vav3 protein. Biochemical analysis revealed that EhGEF3 is capable of stimulating nucleotide exchange on the E. histolytica EhRacA and EhRho1 GTPases in vitro, however only a partial GEF activity toward Cdc42 was observed. Conserved residue analysis showed that the N816 and L817 residues are critical for EhGEF3 activity. Cellular studies revealed that EhGEF3 colocalises with EhRacA in the rear of migrating cells, probably regulating the retraction of the uroid and promoting the activation of these GTPase during the chemotactic response toward fibronectin, and that EhGEF3 also regulates EhRacA activation during the capping of cell receptors. These results suggest that EhGEF3 should have a direct role in activating EhRacA, and in bringing the activated GTPase to specific target sites such as the uroid.  相似文献   

20.
Mono-glucosylation of Rho, Rac, and Cdc42 by Clostridium difficile toxin B (TcdB) induces changes of actin dynamics and apoptosis. When fibroblasts were treated with TcdB, an apparent decrease of the cellular Rac1 level was observed when applying anti-Rac1(Mab 102). This decrease was not based on degradation as inhibition of the proteasome by lactacystin did not stabilise cellular Rac1 levels. The application of anti-Rac1 (Mab 23A8) showed that the cellular Rac1 level slightly increased in TcdB-treated fibroblasts; thus, the apparent loss of cellular Rac1 was not due to degradation but due to impaired recognition of glucosylated Rac1 by anti-Rac1 (Mab 102). In contrast, recognition of RhoA by anti-RhoA (Mab 26C4) and Cdc42 by anti-Cdc42 (Mab 44) was not altered by glucosylation; a transient decrease of cellular RhoA and Cdc42 in TcdB-treated fibroblasts was indeed due to proteasomal degradation, as inhibition of the proteasome by lactacystin stabilised both cellular RhoA and Cdc42 levels. The finding that the apparent decrease of Rac1 reflects Rac1 glucosylation offers a valuable tool to determine Rac1 glucosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号