首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the broad clinical interest which tissue polypeptide antigen (TPA) has attracted as a tumor marker, human cell lines and human tissues have been analyzed for TPA expression using immunofluorescence microscopy. Epithelial cell lines including HeLa, MCF-7, and A-431 are recognized by TPA antibodies whereas human lines of non-epithelial origin are not. The positive staining patterns coincide with keratin-type intermediate filaments of the cytoskeleton. On tissue sections a subset of epithelial cells including uterine epithelium, bile duct cells in liver and tumor cells in breast carcinoma are strongly positive; cells of the squamous epithelia of skin and tongue as well as cells of non-epithelial origin are negative. In immunoblots of human epidermis, human tongue mucosa, human hair follicles, Detroit 562 cells, HeLa cells, MCF-7 and RT-4 cells, only keratins 8, 18 and 19 show TPA antigenicity. Conversely a TPA preparation is recognized by various antibodies known to react with keratins, including alpha-IFA, KG 8.13.2 and two antibodies which recognize keratins 18 (CK2) and 19, respectively. Our results thus relate TPA to human keratins 8, 18 and 19 which are known cytoskeletal components in both normal and malignant epithelial cells of simple and non-squamous origin. We speculate that the elevated levels of circulating TPA antigenicity present in the sera of patients with carcinoma, which are often used to monitor tumor progression, correspond to soluble proteolytic fragments originating from this particular keratin subgroup.  相似文献   

2.
The murine monoclonal IFA antibody recognizes a conserved sequence present in almost all intermediate filament (IF) proteins. When IFA antibody was injected into 13 different primary or established cell lines, striking differences were detected between epithelial and fibroblastic cell lines. In epithelial cells keratin IFs were broken down within 4 h into numerous spheroid aggregates scattered throughout the cytoplasm. Keratin aggregates were first detected in the cytoplasmic periphery. In contrast, in fibroblastic cells, injection of IFA antibody led to the formation of perinuclear coils of vimentin. IFA antibody at a concentration of greater than 1 mg/ml had to be injected to initiate these transitions. When HeLa cells, which contain separate networks of vimentin and keratin filaments, were injected with IFA antibody, vimentin did not form perinuclear coils but was instead found together with keratin in aggregates. Electron micrographs of HeLa cells injected with IFA antibody showed that the aggregates have diameters between 0.5 and 2.6 microns and resembled the keratin aggregates observed in certain mitotic epithelial cells. Although the ultrastructural studies support an association of some aggregates with desmosomes, aggregates were, however, also induced by injection of IFA antibody into human keratinocytes in low calcium medium under conditions where desmosomes were not present.  相似文献   

3.
We have isolated poly (A)+ RNA, highly enriched in keratin mRNA from bovine muzzle epidermis, and injected it into epithelial cells of a different type, i.e., cultured kidney epithelial cells of the same (MDBK) or taxonomically distant (PtK2) species. Both recipient cell lines contain keratin polypeptides that are different from those present in epidermal cells. Using keratin subtype-specific antibodies in immunofluorescence and immunoelectron microscopy, we show that foreign keratin mRNAs when injected into a different type of epithelial cell can recruit polyribosomes and are translated together with the keratin mRNAs of the host cell. Foreign epidermal keratins are excluded from vimentin filaments and other structures but readily coassemble with the endogenous keratins and appear to be integrated into the meshwork of the preexisting kidney-type keratin filaments. Our observations indicate that different sets of keratin polypeptides from the same or different species can coassemble in the living cell into a common filament system. Thus we have developed a procedure that allows experimental alteration of the intermediate filament cytoskeleton within living epithelial cells.  相似文献   

4.
To study the assembly of intermediate filaments in vivo we have transfected fibroblast cell lines with the cDNAs coding for keratins 8 and 18 under the control of the promoter of the SV40 early region and followed keratin expression by RNA hybridization, two-dimensional gel electrophoresis, and immunofluorescence analysis. When expressed individually, keratins 8 and 18 failed to polymerize into intermediate filaments but formed granular aggregates of variable size distributed throughout the cytoplasm as seen by staining with specific antibodies. The expression of one of these two keratins did not induce the synthesis of its partner or of any other keratin. Coexpression of the two keratins produced filamentous structures, frequently perinuclear, indicating that the two types of polypeptides were able to assemble into intermediate filaments but could not form the cytoskeleton characteristic of epithelial cells. These results demonstrate that assembly in heterocomplexes stabilizes keratins against cellular degradation, helping to explain why excess pools of simple keratins have never been detected.  相似文献   

5.
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis.  相似文献   

6.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

7.
应用制备的血清抗体,采用免疫细胞化学方法观察了两株培养上皮细胞的分裂过程中IF的动态变化过程。实验结果显示,在上皮细胞分裂过程中,IF形态结构及空间分布发生了显著变化,不同细胞之间存在差异,分裂的Vero细胞中角蛋白纤维和波形纤维都维持纤维形态,围绕分裂器形成纤维网罩或纤维束环,随着细胞分裂的进行,IF网的空间组织结构和外观发生动态变化;分裂的HeLa细胞中,角蛋白纤维和波形纤维广泛重组形成颗粒状胞质小体,分裂结束后重建IF网。实验结果表明,IF变化具有细胞周期依赖性和一定的细胞特异性。本文对IF在细胞分裂过程中的功能意义作了讨论。  相似文献   

8.
本文用兔抗角蛋白抗体、豚鼠抗波形纤维蛋白抗体和抗角蛋白单抗AE1的间接免疫荧光抗体法比较了两个人体肝癌细胞系(BEL-7402和BEL-7404)和HeLa细胞中等纤维的分布式样,同时用SDS-PAGE法分析了上述细胞的中等纤维抽提物的多肽组成。结果表明:三种上皮细胞均含有两套不同类型的中等纤维系统:角蛋白纤维和波形纤维。但是,人体肝癌细胞和HeLa细胞的中等纤维分布式样和角蛋白多肽组成均有明显的差别。其中最明显的差别是HeLa细胞具有丰富的桥粒-张力纤维复合物和分子量为40 kd的角蛋白多肽,而在两个人体肝癌细胞系中看不到。  相似文献   

9.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

10.
11.
《The Journal of cell biology》1994,127(4):1049-1060
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution- binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

12.
Mouse polyclonal antibodies have been raised against two human proteins (IEF [isoelectric focusing] 31, Mr = 50,000; IEF 46, Mr = 43,500) that have previously been shown to be present in HeLa cytoskeletons enriched in intermediate-sized filaments. Immunoprecipitation studies show that both proteins share common antigenic determinants with each other and with the putative human keratins IEF 36 and 44, also present in HeLa cytoskeletons. Indirect immunofluorescence studies showed that both antibodies revealed similar filamentous networks in various cultured epithelial cells of human origin. These included AMA (transformed amnion), HeLa (cervical carcinoma), normal amnion cells, Fl-amnion (transformed amnion), WISH-amnion (transformed amnion), Chang liver (liver), and Detroid-98 (sternal marrow). Human cells that did not react with both antibodies included skin fibroblasts, lung fibroblasts (WI-38), SV40-transformed lung fibroblasts, Molt 4 (leukemia), lymphocytes, and monocytes. These results were in complete agreement with the presence or absence of both proteins in two-dimensional gels of the different cell types. Exposure of AMA cells to demecolcine (24 h; 10 micrograms/ml) caused the total collapse of vimentin filaments but, as seen by indirect immunofluorescence, caused only a partial redistribution of the IEF 31 and 46 filaments. These results are taken to suggest that both proteins are components of the intermediate-sized filaments of the "keratin" type. The antibodies could be clearly differentiated by staining human bladder carcinoma EJ 19 cells, as only the IEF 46 antibody stained a filamentous network in these cells The occurrence of keratins IEF 31, 36, 44, and 46 in different cultured human epithelial cells has been studied using two-dimensional gel electrophoresis.  相似文献   

13.
The epithelial derived cell lines PtK2 and HeLa were characterized by double immunofluorescence microscopy using purified antibodies against vimentin and prekeratin. The results show that both cell types express simultaneously two immunologically distinct intermediate-sized filaments. Use of colcemid-treated cells confirms that the vimentin fibers and not the keratin-related fibers are rearranged into coils around the nucleus. In some cells staining of fibrous fragments is observed, which are perhaps involved in the synthesis or breakdown of this class of filaments. The concept that growing cells derived from differentiated cell types express not only the intermediate-sized filament system typical of the differentiated cell type but in addition contain intermediate-sized filaments of the vimentin type is discussed.  相似文献   

14.
Human cells were transfected with a mouse vimentin cDNA expression vector containing the hormone response element of mouse mammary tumor virus. The distribution of mouse vimentin after induction with dexamethasone was examined by indirect immunofluorescence with antivimentin antibodies specific for either mouse or human vimentin. In stably transfected HeLa cells, which contain vimentin filaments, addition of dexamethasone resulted in the initial appearance of mouse vimentin in discrete areas, usually perinuclear, that always corresponded to areas of the human filament network with the most intense fluorescence. Within 20 h after addition of dexamethasone, the mouse and human vimentin immunofluorescence patterns were identical. However, in stably transfected MCF-7 cells, which lack vimentin filaments, induction of mouse vimentin synthesis resulted in assembly of vimentin filaments throughout the cytoplasm without any obvious local concentrations. Transient expression experiments with SW-13 cell subclones that either lack or contain endogenous vimentin filaments yielded similar results to those obtained with MCF-7 and HeLa transfectants, respectively. Further experiments with HeLa transfectants were conducted to follow the fate of the mouse protein after synthesis had dropped after withdrawal of dexamethasone. The mouse vimentin-specific fluorescence was initially lost from peripheral areas of the cells while the last detectable mouse vimentin always corresponded to the human filament network with the most intense fluorescence. These studies are consistent with a uniform assembly of vimentin filaments throughout the cytoplasm and suggest that previous observations of polarized or vectorial assembly from a perinuclear area to more peripheral areas in cells may be attributable to the nonuniformly distributed appearance of vimentin filaments in immunofluorescence microscopy.  相似文献   

15.
Human keratin 18 (K18) and keratin 8 (K8) and their mouse homologs, Endo B and Endo A, respectively, are expressed in adult mice primarily in a variety of simple epithelial cell types in which they are normally found in equal amounts within the intermediate filament cytoskeleton. Expression of K18 alone in mouse L cells or NIH 3T3 fibroblasts from either the gene or a cDNA expression vector results in K18 protein which is degraded relatively rapidly without the formation of filaments. A K8 cDNA containing all coding sequences was isolated and expressed in mouse fibroblasts either singly or in combination with K18. Immunoprecipitation of stably transfected L cells revealed that when K8 was expressed alone, it was degraded in a fashion similar to that seen previously for K18. However, expression of K8 in fibroblasts that also expressed K18 resulted in stabilization of both K18 and K8. Immunofluorescent staining revealed typical keratin filament organization in such cells. Thus, expression of a type I and a type II keratin was found to be both necessary and sufficient for formation of keratin filaments within fibroblasts. To determine whether a similar proteolytic system responsible for the degradation of K18 in fibroblasts also exists in simple epithelial cells which normally express a type I and a type II keratin, a mutant, truncated K18 protein missing the carboxy-terminal tail domain and a conserved region of the central, alpha-helical rod domain was expressed in mouse parietal endodermal cells. This resulted in destabilization of endogenous Endo A and Endo B and inhibition of the formation of typical keratin filament structures. Therefore, cells that normally express keratins contain a proteolytic system similar to that found in experimentally manipulated fibroblasts which degrades keratin proteins not found in their normal polymerized state.  相似文献   

16.
Rat liver epithelial cells (LECs) are non-parenchymal proliferating cells that readily emerge in primary culture and can be established as cell lines, but their in vivo cell(s) of origin is unclear. We reported recently some evidence indicating that the LEC line, T51B, contains two cytokeratins (CKs) equivalent to human CK8 and CK14 respectively. T51B cells also contain vimentin assembled as a network of intermediate filaments distinct from that of the CKs. In the present study, we examined the expression of CK14 gene in various LEC preparations and a Triton-resistant rat skin cytoskeletal fraction, and then assessed its usefulness as an LEC specific marker in the liver. Northern and Western blot analyses with cDNAs and antibodies for CK8, CK14, CK18 and vimentin confirmed that rat hepatocytes express CK8 and CK18 genes only, whereas T51B cells express CK8, CK14 and vimentin genes in the absence of CK18. CK14 was also present in LECs derived as primary from embryonic-day 12 rat liver and secondary cultures from 4-day-old rat liver. Primary cultures of oval cells isolated from 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) treated rat liver (an enriched source of biliary epithelial cells) contained CK14 mRNAs which were slightly shorter than those in LECs. The analyses of CK5 (the usual partner of CK14) gene expression using specific cDNA and antibody clearly demonstrated its absence in LECs. In situ double immunolocalization analyses by laser scanning confocal microscopy showed that CK14 was not present in hepatocytes (HES6+ cells) and was expressed in some biliary epithelial (BDS7+ cells). CK14-positive cells were also found in the Glisson's capsule. However, CK14-positive cells of the portal region were vimentin negative, whereas those of the Glisson's capsule were vimentin positive. Our results suggest that CK14 gene expression is part of the differentiation program of two types of LECs and that this differential CK14 gene expression can be used as a new means to type LECs in culture and in vivo.  相似文献   

17.
Expression of intermediate filament (IF) isotypes was studied in six human and two murine melanoma cell lines. With one exception, these lines expressed IFs only of the vimentin type; neurofilament peptides, desmin and GFAP were not detected. However, the M5 human melanoma line also expressed extensive cytokeratin tonofilament arrays, as visualized by immunofluorescence with a panel of eleven monoclonal antibodies and hetero-antisera to cytokeratins; only the keratin 19-specific antibody BA16 did not react. By 2 D gel electrophoresis, five major keratin peptides were detected (keratins 7, 8, 13, 17 and 18), and an additional 57 kD peptide was detected on immunoblots with several antikeratin antibodies. Also observed in M5 cells was focal collapse of tonofilament arrays in mitotic cells. All the melanoma lines tested were positive for S100; M5 and two other cell lines were also positive for the 220-240 kD neuroectoderm-associated cell-surface differentiation antigen defined by monoclonal antibody UJ 127:11. In all the melanoma cell lines, secretion of extracellular matrix proteins (fibronectin, laminin and collagen type IV) was sparse or absent, and all were negative for the epithelial cell markers HMG-1 and HMG-2. Co-expression of keratin and vimentin by a melanoma cell line is discussed in the light of recent controversy concerning expression of cytokeratins by other neoplasms of putative neuroectodermal origins.  相似文献   

18.
Immunomorphological examination of the distribution of three keratins in cultured rat liver-derived epithelial cell lines of the IAR series was performed in order to find out the effects of neoplastic evolution on the expression of these epithelium-specific markers. Specific monoclonal antibodies were used to reveal various intermediate filament proteins: keratins with molecular masses of 55, 49 or 40 kD (K55, K49 or K40), and vimentin. The expression of keratins was negligible in sparse and dense cultures of non-transformed lines, which had typical epithelial morphology. The examined keratins were also absent in the sparse cultures of transformed lines, which have lost partially or completely the morphological features of epithelia. However, cells in dense cultures of most transformed lines contained numerous keratin filaments. It is suggested that the paradoxical increase of keratin expression after transformation is due to increased saturation density of transformed cultures; this high density favours the expression. As shown by the experiments with culture wounding, the effects of density are local and reversible. While K55 was present in all the cells of dense cultures, the expression of the other two keratins was dependent on the cell position within these cultures. It is suggested that the expression of the latter two keratins, besides high cell density, also requires the presence (K40) or the absence (K49) of cell-substratum contacts. Possible mechanisms of the effects of cell density on the expression of keratins are discussed.  相似文献   

19.
The intracellular precipitation of nonerythrocyte spectrin has been achieved by the microinjection into cells of either a monoclonal antibody (IgM) directed against the alpha chain of nonerythrocyte spectrin or an affinity-purified polyclonal antibody raised against bovine brain spectrin (fodrin). This antibody-induced precipitation of spectrin was observed in fibroblastic and epithelial cell types, including embryonic bovine tracheal fibroblasts, a bovine kidney epithelial cell line (MDBK), Hela cells, gerbil fibroma cells, and fibroblast lines of human and mouse origins. The precipitation of the spectrin was specific and two proteins with a similar distribution to the nonerythrocyte spectrin were not induced to co-precipitate in the spectrin aggregates. Comparing the two types of antibody microinjected, the affinity-purified polyclonal antibody resulted in more compact aggregates of spectrin and these were frequently aligned with microfilament bundles. The rate at which the spectrin aggregates were cleared into presumptive lysosomes varied with different cell types: in some such as the bovine kidney epithelial cells, this appeared complete within 3 h after microinjection, whereas in some of the fibroblasts the spectrin aggregates were prominent in the cytoplasm at 24 and even 48 h after microinjection. Microfilament bundles appeared unaffected by the aggregation of spectrin. We conclude that the integrity of the actin microfilament bundles does not require nonerythrocyte spectrin and that most probably these structures are linked at their termini to the membrane through proteins other than nonerythrocyte spectrin. No effect of the intracellular spectrin precipitation was observed on cell shape, or on the distribution of coated vesicles or microtubules. The aggregation of the nonerythrocyte spectrin, however, did affect the distribution of the vimentin type of intermediate filaments in most of the cell types studied. These filaments became more distorted and condensed, but generally did not collapse around the nucleus as occurs following microtubule disruption induced by colchicine treatment. The clumped intermediate filaments were frequently seen to coincide with regions of aggregated spectrin. This aggregation of intermediate filaments was not induced by microinjection of irrelevant antibodies, nor was it induced by the monoclonal antibody against spectrin in cells with which it did not cross-react.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Recently, bovine pulmonary microvascular endothelial cells (PMV) were shown to contain cytokeratin 8 and 19 intermediate filaments (Patton et al., 1990). In this study, we examine the effect of culture contiguity and vasoactive agents on the content and assembly of cytokeratins in PMV. Immunofluorescent staining of PMV cultures show a progressive increase in cytokeratin filament assembly. In freshly plated PMV, keratin appears as hazy staining (less than 4 hr) and later organizes into keratin 'plaques' (4 days) associated with cell-cell contacts; post confluent (greater than 7 days) PMV cultures contain fully assembled cytokeratin filaments which extend to the cell periphery and approach filaments in apposed cells. Vimentin filaments are also present in freshly plated PMV cultures but unlike cytokeratins, become less filamentous at confluency. This cell density-dependent modulation of cytokeratins is also demonstrated by densitometric analysis of autoradiographs of 35S-methionine labeled keratins in which PMV keratin content is elevated at high cell densities, while vimentin content remains constant. Desmoplakins I and II, components of desmosomes, could not be demonstrated in PMV by immunoblotting. PMV treated with permeability modulating agents (4 x 10(-3) M EGTA, 1 microM cytochalasin B, 1 microM bradykinin, 1 microM A23187, and 1 microM PMA) exhibit border retraction and altered keratin filament staining. From these studies we conclude: 1) cytokeratin 8 and 19 containing intermediate filaments are present in confluent PMV cultures with vimentin but without desmosomes, 2) the state of assembly of PMV cytokeratin and vimentin filaments appears to be oppositely affected by culture contiguity, and 3) treatment of monolayers with vasoactive agents alters the state of assembly of cytokeratin filaments. We speculate that modulation of cytokeratin assembly in PMV may be involved in regulation of pulmonary microvascular structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号