首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

2.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

3.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Pr55Gag molecule with the plasma membrane of an infected cell is an essential step of the viral life cycle. Myristic acid and positively charged residues within the N-terminal portion of MA constitute the membrane-binding domain of Pr55Gag. A separate assembly domain, termed the interaction (I) domain, is located nearer the C-terminal end of the molecule. The I domain is required for production of dense retroviral particles, but has not previously been described to influence the efficiency of membrane binding or the subcellular distribution of Gag. This study used a series of Gag-green fluorescent protein fusion constructs to define a region outside of MA which determines efficient plasma membrane interaction. This function was mapped to the nucleocapsid (NC) region of Gag. The minimal region in a series of C-terminally truncated Gag proteins conferring plasma membrane fluorescence was identified as the N-terminal 14 amino acids of NC. This same region was sufficient to create a density shift in released retrovirus-like particles from 1.13 to 1.17 g/ml. The functional assembly domain previously termed the I domain is thus required for the efficient plasma membrane binding of Gag, in addition to its role in determining the density of released particles. We propose a model in which the I domain facilitates the interaction of the N-terminal membrane-binding domain of Pr55Gag with the plasma membrane.  相似文献   

4.
Type C retroviruses assemble at the plasma membrane of the infected cell. Attachment of myristic acid to the N terminus of the Gag precursor polyprotein has been shown to be essential for membrane localization and virus morphogenesis. Here, we report that the matrix (MA) protein contains regions that in conjunction with myristylation are important for Gag protein stability and the assembly of murine leukemia viruses. We identified these domains by generating a series of Akv murine leukemia virus mutants carrying small in-frame deletions within the coding region of the MA protein encompassing 129 amino acids. Studies show that mutants with deletions within the segment encoding the first 102 amino acids were all replication defective, whereas the C-terminal residues 103 to 124 seem not to have any critical function in virus maturation. Cells expressing the replication-defective genomes did not release any detectable Gag proteins. In one mutant, deletion of 3 amino acids in the N terminus resulted in an inefficiently myristylated, stable Gag polyprotein. The remaining defect genomes encoded unstable Gag proteins, although they were modified with myristic acid. The results suggest that the matrix domain plays an important role in stabilizing the Gag polyprotein.  相似文献   

5.
Targeting of the human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55(gag) to the plasma membrane, the site of virus assembly, is primarily mediated by the N-terminal matrix (MA) domain. N-myristylation of MA is essential for the stable association of Pr55(gag) with membranes and for virus assembly. We now show that single amino acid substitutions near the N terminus of MA can dramatically impair assembly without compromising myristylation. Subcellular fractionation demonstrated that Gag membrane binding was compromised to a similar extent as in the absence of the myristyl acceptor site, indicating that the myristyl group was not available for membrane insertion. Remarkably, the effects of the N-terminal modifications could be completely suppressed by second-site mutations in the globular core of MA. The compensatory mutations enhanced Gag membrane binding and increased viral particle yields above wild-type levels, consistent with an increase in the exposure of the myristyl group. Our results support a model in which the compact globular core of MA sequesters the myristyl group to prevent aberrant binding to intracellular membranes, while the N terminus is critical to allow the controlled exposure of the myristyl group for insertion into the plasma membrane.  相似文献   

6.
The membrane-binding matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) structural precursor Gag (PrGag) protein oligomerizes in solution as a trimer and crystallizes in three dimensions as a trimer unit. A number of models have been proposed to explain how MA trimers might align with respect to PrGag capsid (CA) N-terminal domains (NTDs), which assemble hexagonal lattices. We have examined the binding of naturally myristoylated HIV-1 matrix (MyrMA) and matrix plus capsid (MyrMACA) proteins on membranes in vitro. Unexpectedly, MyrMA and MyrMACA proteins both assembled hexagonal cage lattices on phosphatidylserine-cholesterol membranes. Membrane-bound MyrMA proteins did not organize into trimer units but, rather, organized into hexamer rings. Our results yield a model in which MA domains stack directly above NTD hexamers in immature particles, and they have implications for HIV assembly and interactions between MA and the viral membrane glycoproteins.  相似文献   

7.
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.  相似文献   

8.
The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P2-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P2 binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.  相似文献   

9.
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions.  相似文献   

10.
Ono A  Freed EO 《Journal of virology》1999,73(5):4136-4144
Binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55(Gag), to membrane is an indispensable step in virus assembly. Previously, we reported that a matrix (MA) residue 6 substitution (6VR) imposed a virus assembly defect similar to that observed with myristylation-defective mutants, suggesting that the 6VR change impaired membrane binding. Intriguingly, the 6VR mutation had no effect on Gag myristylation. The defective phenotype imposed by 6VR was reversed by changes at other positions in MA, including residue 97. In this study, we use several biochemical methods to demonstrate that the residue 6 mutation, as well as additional substitutions in MA amino acids 7 and 8, reduce membrane binding without affecting N-terminal myristylation. This effect is observed in the context of Pr55(Gag), a truncated Gag containing only MA and CA, and in MA itself. The membrane binding defect imposed by the 6VR mutation is reversed by second-site changes in MA residues 20 and 97, both of which, when present alone, increase membrane binding to levels greater than those for the wild type. Both reduced and enhanced membrane binding imposed by the MA substitutions depend upon the presence of the N-terminal myristate. The results support the myristyl switch model recently proposed for the regulation of Gag membrane binding, according to which membrane binding is determined by the degree of exposure or sequestration of the N-terminal myristate moiety. Alternatively, insertion of the myristate into the lipid bilayer might be a prerequisite event for the function of other distinct MA-encoded membrane binding domains.  相似文献   

11.
12.
The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).  相似文献   

13.
Role of the major homology region in assembly of HIV-1 Gag   总被引:6,自引:0,他引:6  
The major homology region (MHR) is a highly conserved sequence in the gag gene of all retroviruses, including HIV-1. Its role in assembly is unknown, but deletion of the motif significantly impairs membrane binding and viral particle formation. To begin characterizing this defect, we have determined the contribution of this region to the energetics of the assembly process. Intrinsic fluorescence studies were conducted to determine the change in free energy associated with membrane and RNA binding using tRNA and large unilamellar vesicles of 1-palmitoyl-2-oleoylphosphatidylserine as models. For the wild-type protein, the change in free energy was within RT [600 cal/(mol.K)] whether Gag binds first to RNA or to the membrane. Thus, the initial binding of Gag can be to either substrate, but in vivo conditions favor initial association to RNA presumably due to its higher local concentration. After establishing the pattern of assembly, we compared the binding energy of Gag(WT) versus the deletion mutant, Gag(Delta)(MHR). Gag(WT) bound to membranes with a 2-fold higher affinity than Gag(Delta)(MHR), and the binding to RNA was similar for the two proteins. Gag prebound to RNA or to membrane exhibited approximately 2-4-fold greater binding affinity than Gag(Delta)(MHR) for binding the membrane or RNA, respectively. Most importantly, the mutant was significantly impaired in its ability to self-associate on RNA or on membrane surfaces. This key role of the MHR in promoting productive protein-protein interactions was also seen in altered amounts of cleavage products and the lack of membrane-bound, RNA-containing replication intermediates in infected cells. These results suggest that Gag first binds to RNA and then assembles into a multimeric complex with a large membrane-binding face that facilitates subsequent membrane binding. Deletion of the MHR disrupts the protein-protein interactions required to complete this process.  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag gene product directs the assembly of virions at the inner surface of the cell plasma membrane. The specificity of plasma membrane binding by Pr55gag is conferred by a combination of an N-terminal myristoyl moiety and a basic residue-rich domain. Although the myristate plus basic domain is also present in the p17MA proteolytic product formed upon Pr55gag maturation, the ability of p17MA to bind to membranes is significantly reduced. It was previously reported that the reduced membrane binding of p17MA was due to sequestration of the myristate moiety by a myristoyl switch (W. Zhou and M. D. Resh, J. Virol. 70:8540–8548, 1996). Here we demonstrate directly that treatment of membrane-bound Pr55gag in situ with HIV-1 protease generates p17MA, which is then released from the membrane. Pr55gag was synthesized in reticulocyte lysates, bound to membranes, and incubated with purified HIV-1 protease. The p17MA product in the membrane-bound and soluble fractions was analyzed following proteolysis. Newly generated p17MA initially was membrane bound but then displayed a slow, time-dependent dissociation resulting in 65% solubilization. Residual p17MA could be extracted from the membranes with either high pH or high salt. Treatment of membranes from transfected COS-1 cells with protease revealed that Pr55gag was present within sealed membrane vesicles and that the release of p17MA occurred only when detergent and salt were added. We present a model proposing that the HIV-1 protease is the “trigger” for a myristoyl switch mechanism that modulates the membrane associations of Pr55gag and p17MA in virions and membranes.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Gag multimerization and membrane binding are required for particle formation. However, it is unclear what constitutes a minimal plasma membrane-specific targeting signal and what role the matrix (MA) globular head and other Gag domains play in membrane targeting. Here, we use membrane flotation and microscopic analysis of Gag deletion mutants to demonstrate that the HIV-1 MA globular head inhibits a plasma membrane-specific targeting signal contained within the six amino-terminal MA residues. MA-mediated inhibition is relieved by concentration-dependent Gag multimerization and imparts a high degree of cooperativity on Gag-membrane association. This cooperativity may confer temporal and spatial regulation on HIV-1 assembly.  相似文献   

16.
Structure of Equine Infectious Anemia Virus Matrix Protein   总被引:3,自引:0,他引:3       下载免费PDF全文
The Gag polyprotein is key to the budding of retroviruses from host cells and is cleaved upon virion maturation, the N-terminal membrane-binding domain forming the matrix protein (MA). The 2.8-A resolution crystal structure of MA of equine infectious anemia virus (EIAV), a lentivirus, reveals that, despite showing no sequence similarity, more than half of the molecule can be superimposed on the MAs of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). However, unlike the structures formed by HIV-1 and SIV MAs, the oligomerization state observed is not trimeric. We discuss the potential of this molecule for membrane binding in the light of conformational differences between EIAV MA and HIV or SIV MA.  相似文献   

17.
W Zhou  M D Resh 《Journal of virology》1996,70(12):8540-8548
The human immunodeficiency virus type 1 matrix protein (p17MA) plays a central role at both the early and late stages of the virus life cycle. During viral assembly, the p17MA domain of Pr55gag promotes membrane association, which is essential for the formation of viral particles. When viral infection occurs, the mature p17MA dissociates from the plasma membrane and participates in the nuclear targeting process. Thus, p17MA contains a reversible membrane binding signal to govern its differential subcellular localization and biological functions. We previously identified a membrane binding signal within the amino-terminal 31 amino acids of the matrix domain of human immunodeficiency virus type 1 Gag, consisting of myristate and a highly basic region (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). Here we show that exposure of this membrane binding signal is regulated in different Gag protein contexts. Within full-length Pr55gag, the membrane targeting signal is exposed and can direct Pr55gag as well as heterologous proteins to the plasma membrane. However, in the context of p17MA alone, this signal is hidden and unable to confer plasma membrane binding. To investigate the molecular mechanism for regulation of membrane binding, a series of deletions within p17MA was generated by sequentially removing alpha-helical regions defined by the nuclear magnetic resonance structure. Removal of the last alpha helix (amino acids 97 to 109) of p17MA was associated with enhancement of binding to biological membranes in vitro and in vivo. Liposome binding experiments indicated that the C-terminal region of p17MA exerts a negative effect on the N-terminal MA membrane targeting domain by sequestering the myristate signal. We propose that mature p17MA adopts a conformation different from that of the p17MA domain within Pr55gag and present evidence to support this hypothesis. It is likely that such a conformational change results in an N-terminal myristyl switch which governs differential membrane binding.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) Gag matrix (MA) domain facilitates Gag targeting and binding to the plasma membrane (PM) during virus assembly. Interaction with a PM phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)], plays a key role in these MA functions. Previous studies showed that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), mislocalizes HIV-1 Gag to the cytosol and greatly reduces HIV-1 release efficiency. In this study, we sought to determine the role of the MA-PI(4,5)P(2) interaction in Gag localization and membrane binding of a deltaretrovirus, human T-lymphotropic virus type 1 (HTLV-1). We compared the chimeric HIV-1 Gag (HTMA), in which MA was replaced with HTLV-1 MA, with wild-type HIV-1 and HTLV-1 Gag for PI(4,5)P(2) dependence. Our results demonstrate that, unlike HIV-1 Gag, subcellular localization of and VLP release by HTLV-1 and HTMA Gag were minimally sensitive to 5ptaseIV overexpression. These results suggest that the interaction of HTLV-1 MA with PI(4,5)P(2) is not essential for HTLV-1 particle assembly. Furthermore, liposome-binding analyses showed that both HTLV-1 and HTMA Gag can bind membrane efficiently even in the absence of PI(4,5)P(2). Efficient HTLV-1 Gag binding to liposomes was largely driven by electrostatic interaction, unlike that of HIV-1 Gag, which required specific interaction with PI(4,5)P(2). Furthermore, membrane binding of HTLV-1 Gag in vitro was not suppressed by RNA, in contrast to HIV-1 Gag. Altogether, our data suggest that Gag targeting and membrane binding mediated by HTLV-1 MA does not require PI(4,5)P(2) and that distinct mechanisms regulate HIV-1 and HTLV-1 Gag membrane binding.  相似文献   

19.
Formation of human immunodeficiency virus type 1 (HIV-1) particles takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein. A functional assembly domain (the M domain) within the N-terminal portion of Pr55Gag mediates the interaction of Gag with cellular membranes. However, the determinants that provide specificity for assembly on the plasma membrane, as opposed to intracellular membranes, have not been identified. Recently, it was reported that Pr55Gag interacts with lipid raft microdomains of the plasma membrane. We sought to identify the domains within Pr55Gag that contribute to lipid raft association of Gag. Here we demonstrate that the I domain is required for interaction with detergent-resistant membrane fractions (DRMs). Mutation of key I-domain residues or loss of myristylation abrogated the association of Gag with DRMs. Thus, the I domain and the M domain combine to mediate Gag-lipid raft interactions as defined by these biochemical criteria. However, Gag protein complexes defined by flotation studies were much denser than classical lipid rafts, failed to incorporate classical lipid raft marker proteins, and were not disrupted by cholesterol extraction. Large sheets of Gag protein were identified in DRM fractions upon examination by electron microscopy. These results indicate that HIV-1 Pr55Gag forms detergent-resistant complexes at the cellular periphery that are distinct from lipid raft microdomains.  相似文献   

20.
HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号