首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labeling of primary amines on peptides with reagents containing stable isotopes is a commonly used technique in quantitative mass spectrometry. Isobaric labeling techniques such as iTRAQ™ or TMT™ allow for relative quantification of peptides based on ratios of reporter ions in the low m/z region of spectra produced by precursor ion fragmentation. In contrast, nonisobaric labeling with mTRAQ™ yields precursors with different masses that can be directly quantified in MS1 spectra. In this study, we compare iTRAQ- and mTRAQ-based quantification of peptides and phosphopeptides derived from EGF-stimulated HeLa cells. Both labels have identical chemical structures, therefore precursor ion- and fragment ion-based quantification can be directly compared. Our results indicate that iTRAQ labeling has an additive effect on precursor intensities, whereas mTRAQ labeling leads to more redundant MS2 scanning events caused by triggering on the same peptide with different mTRAQ labels. We found that iTRAQ labeling quantified nearly threefold more phosphopeptides (12,129 versus 4,448) and nearly twofold more proteins (2,699 versus 1,597) than mTRAQ labeling. Although most key proteins in the EGFR signaling network were quantified with both techniques, iTRAQ labeling allowed quantification of twice as many kinases. Accuracy of reporter ion quantification by iTRAQ is adversely affected by peptides that are cofragmented in the same precursor isolation window, dampening observed ratios toward unity. However, because of tighter overall iTRAQ ratio distributions, the percentage of statistically significantly regulated phosphopeptides and proteins detected by iTRAQ and mTRAQ was similar. We observed a linear correlation of logarithmic iTRAQ to mTRAQ ratios over two orders of magnitude, indicating a possibility to correct iTRAQ ratios by an average compression factor. Spike-in experiments using peptides of defined ratios in a background of nonregulated peptides show that iTRAQ quantification is less accurate but not as variable as mTRAQ quantification.Stable isotope labeling techniques have become very popular in recent years to perform quantitative mass spectrometry experiments with high precision and accuracy. In contrast to label-free approaches, multiplexed isotopically labeled samples can be simultaneously analyzed resulting in increased reproducibility and accuracy for quantification of peptides and proteins from different biological states. Isotopic labeling strategies can be grouped into two major categories: isobaric labels and nonisobaric labels. In the former category are iTRAQ1 (isobaric tags for relative and absolute quantification (1)) and TMT (tandem mass tags (2)) mass tags. In the nonisobaric labeling category are methods such as mTRAQ (mass differential tags for relative and absolute quantification), stable isotope labeling by amino acids in cell culture (SILAC (3)), and reductive dimethylation (4). Isobaric labeling techniques allow relative quantification of peptides based on ratios of low m/z reporter ions produced by fragmentation of the precursor ion, whereas nonisobaric labeling yields precursors with different masses that can be directly quantified from MS1 intensity. iTRAQ and mTRAQ reagents provide a great opportunity to directly compare capabilities of reporter and precursor ion quantification since both labels have identical chemical structures and differ only in their composition and number of 13C, 15N, and 18O atoms. In fact, iTRAQ-117 and mTRAQ-Δ4 are identical mass tags with a total mass of 145 Da (Fig. 1A). To achieve 4-plex quantification capabilities for iTRAQ labels, the composition of stable isotopes is arranged in a way to obtain the reporter ion/balancing group pairs 114/31, 115/30, 116/29, and 117/28 (1). Three nonisobaric mTRAQ labels were generated by adding or removing four neutrons to the mTRAQ-Δ4 label resulting in mTRAQ-Δ8 and mTRAQ-Δ0, respectively. Both iTRAQ and mTRAQ reagents are available as N-hydroxy-succinimide esters to facilitate primary amine labeling of peptides.Open in a separate windowFig. 1.A, Labeling strategy for comparative evaluation of iTRAQ and mTRAQ tags. Peptides were labeled with the indicated iTRAQ and mTRAQ reagents for combined phosphoproteome and proteome analysis. B, Selection of optimal instrument methods for analysis of iTRAQ- and mTRAQ-labeled peptides. Unfractionated proteome samples (1 ug) and phosphoproteome samples (enriched from 250 μg peptides) were analyzed for iTRAQ samples with a CID/HCD-Top8 method, whereas for mTRAQ we compared CID-Top16 acquisition to HCD-Top8. Note that duty cycle times were for all instrument methods ∼3.1 s.One potential advantage of an iTRAQ labeling strategy is its additive effect on precursor intensities when samples are multiplexed, resulting in increased sensitivity. However, iTRAQ ratios have been demonstrated to be prone to compression. This occurs when other nonregulated background peptides are co-isolated and cofragmented in the same isolation window of the peptide of interest and contribute fractional intensity to the reporter ions in MS2-scans (57). Because most peptides in an experiment are present at 1:1:1:1 ratios between multiplexed samples, all ratios in the experiment tend to be dampened toward unity when cofragmentation occurs. This inaccuracy led to the development of mTRAQ labels to facilitate accurate precursor-based quantification of proteins initially identified in iTRAQ discovery experiments with targeted assays, such as multiple reaction monitoring (MRM) (8). Although iTRAQ has been widely used in discovery-based proteomics studies, mTRAQ has only appeared in a small number of studies thus far (8).In this study we investigated the advantages and disadvantages of iTRAQ and mTRAQ labeling for proteome-wide analysis of protein phosphorylation and expression changes. We selected epidermal growth factor (EGF)-stimulated HeLa cells as a model system for our comparative evaluation of iTRAQ and mTRAQ labeling, as both changes in the phosphoproteome (9) as well as the proteome (10) are well described for EGF stimulation. We show that iTRAQ labeling yields superior results to mTRAQ in terms of numbers of quantified phosphopeptides, proteins and regulated components. By means of spike-in experiments with GluC generated peptides of known ratios we find that iTRAQ quantification is more precise but less accurate than mTRAQ due to ratio compression. We identify a linear relationship of observed versus expected logarithmic GluC generated peptide ratios as well as for logarithmic iTRAQ and mTRAQ ratios of the phosphoproteome and proteome analysis. This indicates a uniform degree of ratio compression over two orders of magnitude throughout iTRAQ data sets and explains why iTRAQ ratio compression does not compromise the ability to detect regulated elements in these experiments.  相似文献   

2.
iTRAQ protein quantification: a quality-controlled workflow   总被引:1,自引:0,他引:1  
Reporter ion-based methods are among the major techniques to quantify peptides and proteins. Two main labels, tandem mass tag (TMT) and iTRAQ, are widely used by the proteomics community. They are, however, often applied as out-of-the-box methods, without thorough quality control. Thus, due to undiscovered limitations of the technique, irrelevant results might be trusted. To address this issue, we here propose a step-by-step quality control of the iTRAQ workflow. From sample preparation to final ratio calculation we provide metrics and techniques assessing the actual effectiveness of iTRAQ quantification as well as a novel method for more reliable protein ratio estimation.  相似文献   

3.
4.
Mass spectrometry has become indispensable for peptide and protein quantification in proteomics studies. When proteomics technologies are applied to understand the biology of plants, two-dimensional gel electrophoresis is still the prevalent method for protein fractionation, identification, and quantitation. In the present work, we have used LC-MS to compare an isotopic (ICPL) and isobaric (iTRAQ) chemical labeling technique to quantify proteins in the endosperm of Ricinus communis seeds at three developmental stages (IV, VI, and X). Endosperm proteins of each stage were trypsin-digested in-solution, and the same amount of peptides was labeled with ICPL and iTRAQ tags in two orders (forward and reverse). Each sample was submitted to nanoLC coupled to an LTQ-Orbitrap high-resolution mass spectrometer. Comparing labeling performance, iTRAQ was able to label 99.8% of all identified unique peptides, while 94.1% were labeled by ICPL. After statistical analysis, it was possible to quantify 309 (ICPL) and 321 (iTRAQ) proteins, from which 95 are specific to ICPL, 107 to iTRAQ, and 214 common to both labeling strategies. We noted that the iTRAQ quantification could be influenced by the tag. Even though the efficiency of the iTRAQ and ICPL in protein quantification depends on several parameters, both labeling methods were able to successfully quantify proteins present in the endosperm of castor bean during seed development and, when combined, increase the number of quantified proteins.  相似文献   

5.
Sjögren's syndrome (SS) is an autoimmune disease that results in pathological dryness of mouth and eye. The diagnosis of SS depends on both clinical evaluation and specific antibodies. The goal of this study was to use quantitative proteomics to investigate changes in tear proteins in a rabbit model of SS‐associated dry eye, induced autoimmune dacryoadenitis (IAD). Proteomic analysis was performed by iTRAQ and nano LC‐MS/MS on tears collected from the ocular surface, and specific proteins were verified by high resolution MRM. It was found that in the tears of IAD rabbits at 2 and 4 weeks after induction, S100 A6, S100 A9, and serum albumin were upregulated, whereas serotransferrin (TF), prolactin‐inducible protein (PIP), polymeric immunoglobulin receptor (pIgR), and Ig gamma chain C region were downregulated. High resolution MRM with mTRAQ labeling verified the changes in S100 A6, TF, PIP, and pIgR. Our results indicated significant changes of tear proteins in IAD rabbits, suggesting these proteins could potentially be used as biomarkers for the diagnosis and prognosis of dry eye. Several of these proteins were also found in the tears of non‐SS dry eye patients indicating a common basis of ocular surface pathology, however, pIgR appears to be unique to SS.  相似文献   

6.
Formalin‐fixed paraffin‐embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC–multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK‐M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK‐M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK‐M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.  相似文献   

7.
In the present study, the fractionation scheme for cysteinyl peptide enrichment (CPE) was combined with the mass differential tags for relative and absolute quantification (mTRAQ) method to reduce sample complexity and increase proteome coverage. Cysteine residues of the proteins were first alkylated using iodoacetyl PEG2–biotin instead of other conventional alkylating agents such as iodoacetamide. After trypsin digestion, amine groups were labeled with mTRAQ, and these labeled peptides were fractionated according to the presence or absence of cysteine residues using avidin–biotin affinity chromatography. With these approaches, we were able to divide the peptides into the two fractions with more than 90% fractionation efficiency for standard protein and MCF7 cell lysate. When the fractionation strategy was applied to colorectal cancer tissue samples, we were able to obtain quantitative information that was consistent with the previous study based on mTRAQ quantification, implying that the cysteine-based fractionation method does not affect mTRAQ quantification. We expect that the mTRAQ-based quantitative analysis combined with peptide fractionation through the CPE strategy would allow for deep-down analysis of proteome samples and ultimately for increasing proteome coverage with simultaneous quantification for biomarker discovery.  相似文献   

8.
Since LC-MS-based quantitative proteomics has become increasingly applied to a wide range of biological applications over the past decade, numerous studies have performed relative and/or absolute abundance determinations across large sets of proteins. In this study, we discovered prognostic biomarker candidates from limited breast cancer tissue samples using discovery-through-verification strategy combining iTRAQ method followed by selected reaction monitoring/multiple reaction monitoring analysis (SRM/MRM). We identified and quantified 5122 proteins with high confidence in 18 patient tissue samples (pooled high-risk (n = 9) or low-risk (n = 9)). A total of 2480 proteins (48.4%) of them were annotated as membrane proteins, 16.1% were plasma membrane and 6.6% were extracellular space proteins by Gene Ontology analysis. Forty-nine proteins with >2-fold differences in two groups were chosen for further analysis and verified in 16 individual tissue samples (high-risk (n = 9) or low-risk (n = 7)) using SRM/MRM. Twenty-three proteins were differentially expressed among two groups of which MFAP4 and GP2 were further confirmed by Western blotting in 17 tissue samples (high-risk (n = 9) or low-risk (n = 8)) and Immunohistochemistry (IHC) in 24 tissue samples (high-risk (n = 12) or low-risk (n = 12)). These results indicate that the combination of iTRAQ and SRM/MRM proteomics will be a powerful tool for identification and verification of candidate protein biomarkers.  相似文献   

9.
High resolution proteomics approaches have been successfully utilized for the comprehensive characterization of the cell proteome. However, in the case of quantitative proteomics an open question still remains, which quantification strategy is best suited for identification of biologically relevant changes, especially in clinical specimens. In this study, a thorough comparison of a label-free approach (intensity-based) and 8-plex iTRAQ was conducted as applied to the analysis of tumor tissue samples from non-muscle invasive and muscle-invasive bladder cancer. For the latter, two acquisition strategies were tested including analysis of unfractionated and fractioned iTRAQ-labeled peptides. To reduce variability, aliquots of the same protein extract were used as starting material, whereas to obtain representative results per method further sample processing and MS analysis were conducted according to routinely applied protocols. Considering only multiple-peptide identifications, LC-MS/MS analysis resulted in the identification of 910, 1092 and 332 proteins by label-free, fractionated and unfractionated iTRAQ, respectively. The label-free strategy provided higher protein sequence coverage compared to both iTRAQ experiments. Even though pre-fraction of the iTRAQ labeled peptides allowed for a higher number of identifications, this was not accompanied by a respective increase in the number of differentially expressed changes detected. Validity of the proteomics output related to protein identification and differential expression was determined by comparison to existing data in the field (Protein Atlas and published data on the disease). All methods predicted changes which to a large extent agreed with published data, with label-free providing a higher number of significant changes than iTRAQ. Conclusively, both label-free and iTRAQ (when combined to peptide fractionation) provide high proteome coverage and apparently valid predictions in terms of differential expression, nevertheless label-free provides higher sequence coverage and ultimately detects a higher number of differentially expressed proteins. The risk for receiving false associations still exists, particularly when analyzing highly heterogeneous biological samples, raising the need for the analysis of higher sample numbers and/or application of adjustment for multiple testing.  相似文献   

10.
There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO‐S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs.  相似文献   

11.
Kang UB  Yeom J  Kim HJ  Kim H  Lee C 《Journal of Proteomics》2012,75(10):3050-3062
An efficient means of identifying protein biomarkers is essential to proper cancer management. A well-characterized proteome resource holds special promise for the discovery of novel biomarkers. However, quantification of the differences between physiological conditions together with deep down profiling has become increasingly challenging in proteomics. Here, we perform expression profiling of the colorectal cancer (CRC) proteome by stable isotope labeling and mass spectrometry. Quantitative analysis included performing mTRAQ and cICAT labeling in a pooled sample of three microsatellite stable (MSS) type CRC tissues and a pooled sample of their matched normal tissues. We identified and quantified a total of 3688 proteins. Among them, 1487 proteins were expressed differentially between normal and cancer tissues by higher than 2-fold; 1009 proteins showed increased expression in cancer tissue, whereas 478 proteins showed decreased expression. Bioinformatic analysis revealed that our data were largely consistent with known CRC relevant signaling pathways, such as the Wnt/β-catenin, caveolar-mediated endocytosis, and RAN signaling pathways. Mitochondrial dysfunction, known as the Waburg hypothesis, was also confirmed. Therefore, our data showing alterations in the proteomic profile of CRC constitutes a useful resource that may provide insights into tumor progression with later goal of identifying biologically and clinically relevant marker proteins. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

12.
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most frequent cause of cancer mortality in the United States. Because CA 19-9 increases not only in PDAC, but also in benign conditions, there is urgent need for an additional PDAC biomarker. Isotope tags for relative and absolute quantification (iTRAQ) were performed using 6 pairs of PDAC and normal tissues from the same patients, to obtain preliminary PDAC-specific proteins; and verification was performed by multiple reactions monitoring (MRM), using 30 PDAC and 20 normal serum, targeting high-abundant serum proteins without any pre-preparation. As a result, 17 candidate proteins from tissue iTRAQ were verified as potential markers (AUC values > 0.7). Multivariate analysis (MA) demonstrated that a 6-marker panel, consisting of alpha-1 antitrypsin, haptoglobin beta chain, hemopexin, transferrin, zinc alpha-2 glycoprotein, and apolipoprotein A4 from the MRM result, had comparable discriminatory power versus CA 19-9. Our study demonstrated that a combination of iTRAQ on PDAC tissue and verification MRM-MA on individual serum was an efficient method for the development of PDAC multimarkers.  相似文献   

13.
14.
We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of ''corresponding proteins'' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are ''corresponding peptides''. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture.  相似文献   

15.
Isobaric multiplexed quantitative proteomics can complement high-resolution sample isolation techniques. Here, we report a simple workflow exponentially modified protein abundance index (emPAI)-MW deconvolution (EMMOL) for normalizing isobaric reporter ratios within and between experiments, where small or unknown amounts of protein are used. EMMOL deconvolutes the isobaric tags for relative and absolute quantification (iTRAQ) data to yield the quantity of each protein of each sample in the pool, a new approach that enables the comparison of many samples without including a channel of reference standard. Moreover, EMMOL allows using a sufficient quantity of control sample to facilitate the peptide fractionation (isoelectric-focusing was used in this report), and mass spectrometry MS/MS sequencing yet relies on the broad dynamic range of iTRAQ quantitation to compare relative protein abundance. We demonstrated EMMOL by comparing four pooled samples with 20-fold range differences in protein abundance and performed data normalization without using prior knowledge of the amounts of proteins in each sample, simulating an iTRAQ experiment without protein quantitation prior to labeling. We used emPAI,1 the target protein MW, and the iTRAQ reporter ratios to calculate the amount of each protein in each of the four channels. Importantly, the EMMOL-delineated proteomes from separate iTRAQ experiments can be assorted for comparison without using a reference sample. We observed no compression of expression in iTRAQ ratios over a 20-fold range for all protein abundances. To complement this ability to analyze minute samples, we report an optimized iTRAQ labeling protocol for using 5 μg protein as the starting material.  相似文献   

16.
Estimation of the concentration of a specific protein in a biological sample often is obtained by analysis of immunoblots. We used this technique to estimate the concentration of three proteins present in homogenates of brain: glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and synapsin I. Homogenates prepared from rat brains known to contain more than 6-fold increases in GFAP, based on a GFAP enzyme-linked immunosorbent assay (ELISA), showed only small relative increases in this protein when the same samples were subjected to immunoblot analysis with polyclonal or monoclonal anti-GFAP; quantification was based on PhosphorImager analysis of [(125)I] protein A bound to the antibodies. Estimates of GFAP in the GFAP-enriched samples approached the expected 6-fold increase when the total protein load per gel lane was reduced from 30 to 1 microgram. Pure GFAP run as standard was not affected by 10-fold increases in protein load, but spiking brain homogenates with pure GFAP "quenched" the values obtained for the standard run alone. Examination of the quenching potential of pure brain tubulin, a protein that nearly comigrates with GFAP on SDS gels, showed that it may be one component of brain homogenates that contributes to masking of immunodetection of GFAP. The effect of total brain homogenate proteins on the signal obtained for a specific protein was not limited to GFAP; similar effects were observed for MBP and synapsin I. The data indicate that estimates of the concentration of a specific protein, whether as a function of its relative amount in a given protein mixture or its relative amount in one mixture compared to another, are influenced by other homogenate proteins present in the mixture.  相似文献   

17.
The specificities of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase were probed using synthetic peptides corresponding to the sequence around phosphorylation sites 1 and 2 on pyruvate dehydrogenase [Tyr-His-Gly-His-Ser(P1)-Met-Ser-Asp-Pro-Gly-Val-Ser(P2)-Tyr-Arg]. The dephosphotetradecapeptide containing aspartic acid at position 8 was a better substrate for the kinase than was the tetradecapeptide containing asparagine at position 8. The apparent Km and V values for the two peptides were 0.43 and 6.1 mM and 2.7 and 2.4 nmol of 32P incorporated/min/mg, respectively. Methylation of the aspartic acid residue also increased the apparent Km of the tetradecapeptide about 14-fold. These results indicate that an acidic residue on the carboxyl-terminal side of phosphorylation site 1 is an important specificity determinant for the kinase. Phosphate was incorporated only into site 1 of the synthetic peptide by the kinase. The phosphatase exhibited an apparent Km of 0.28 mM and a V of 2.3 mumol of 32P released/min/mg for the phosphorylated tetradecapeptide containing aspartic acid. Methylation of the aspartic acid residue had no significant effect on dephosphorylation. The octapeptide and phosphooctapeptide produced by cleavage of the aspartyl-prolyl bond by formic acid were poorer substrates for the kinase and phosphatase than were the tetradecapeptide and phosphotetradecapeptide, respectively. Modification of the amino terminal by acetylation or lysine addition had only a slight effect on the kinase and phosphatase activities.  相似文献   

18.
Elucidation of protease substrate degradomes is essential for understanding the function of proteolytic pathways in the protease web and how proteases regulate cell function. We identified matrix metalloproteinase-2 (MMP-2) cleaved proteins, solubilized pericellular matrix, and shed cellular ectodomains in the cellular context using a new multiplex proteomics approach. Tryptic peptides of intact and cleaved proteins, collected from conditioned culture medium of Mmp2(-/-) fibroblasts expressing low levels of transfected active human MMP-2 at different time points, were amine-labeled with iTRAQ mass tags. Peptide identification and relative quantitation between active and inactive protease transfectants were achieved following tag fragmentation during tandem MS. Known substrates of MMP-2 were identified thereby validating this technique with many novel MMP-2 substrates including the CX(3)CL1 chemokine fractalkine, osteopontin, galectin-1, and HSP90alpha also being identified and biochemically confirmed. In comparison with ICAT-labeling and quantitation, 8-9-fold more proteins and substrates were identified by iTRAQ. "Peptide mapping," the location of multiple peptides identified within a particular protein by iTRAQ in combination with their relative abundance ratios, enabled the domain shed and general location of the cleavage site to be identified in the native cellular substrate. Hence this advance in degradomics cell-based screens for native protein substrates casts new light on the roles for proteases in cell function.  相似文献   

19.
A comparative study on the three quantitative methods frequently used in proteomics, 2D DIGE (difference gel electrophoresis), cICAT (cleavable isotope-coded affinity tags) and iTRAQ (isobaric tags for relative and absolute quantification), was carried out. DIGE and cICAT are familiar techniques used in gel- and LC-based quantitative proteomics, respectively. iTRAQ is a new LC-based technique which is gradually gaining in popularity. A systematic comparison among these quantitative methods has not been reported. In this study, we conducted well-designed comparisons using a six-protein mixture, a reconstituted protein mixture (BSA spiked into human plasma devoid of six abundant proteins), and complex HCT-116 cell lysates as the samples. All three techniques yielded quantitative results with reasonable accuracy when the six-protein or the reconstituted protein mixture was used. In DIGE, accurate quantification was sometimes compromised due to comigration or partial comigration of proteins. The iTRAQ method is more susceptible to errors in precursor ion isolation, which could be manifested with increasing sample complexity. The quantification sensitivity of each method was estimated by the number of peptides detected for each protein. In this regard, the global-tagging iTRAQ technique was more sensitive than the cysteine-specific cICAT method, which in turn was as sensitive as, if not more sensitive than, the DIGE technique. Protein profiling on HCT-116 and HCT-116 p53 -/- cell lysates displayed limited overlapping among proteins identified by the three methods, suggesting the complementary nature of these methods.  相似文献   

20.
The consequence of the complexity of the metabolic network on the amount of control strength of adenine nucleotide translocator was investigated with isolated rat liver mitochondria. Two experimental systems were compared: (i) mitochondria in the presence of yeast hexokinase (hexokinase system) and (ii) the same system plus additional pyruvate kinase (pyruvate kinase system). In both systems the control strength was analysed for the adenine nucleotide translocator by inhibitor titration studies with carboxyatractyloside and for the hexokinase or pyruvate kinase by changing their relative activities. Experimental results were compared with computer simulation of these systems and that of a third one, where the extramitochondrial ATP / ADP ratio was held constant by perifusion (perifusion system). The results demonstrate quite different flux-dependent control strength of the translocator in the three systems. In the hexokinase system the control strength of the translocator on mitochondrial respiration was zero up to respiration rates of about 60 nmol O2/mg protein per min. For higher rates, the control strength increased until the maximum value (0.45) was reached in the fully active state. Here, the same value was also found in the pyruvate kinase system. In all other states of respiration the translocator exerts a higher control strength in the pyruvate kinase system than in the hexokinase system. This different behaviour was attributed to the various changes in the adenine nucleotide pattern caused by partial inhibition of the translocator in the hexokinase and pyruvate kinase system. The data clearly show that the sharing of control strength depends not only on the respiration rate but also on the complexity of the metabolic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号