首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

2.
Abstract— l -5-Hydroxytryptophan ( l -5-HTP) was administered intravenously to rats (12 mg/kg) after inhibition of the peripheral aromatic l -amino acid decarboxylase with l -α-hydrazino-α-methyl dopa (MK 486). The accumulation of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid in the cerebral cortex was measured 1, 2 and 4 h after injection of 5-HTP with automated assay techniques. Besides controls two groups of rats were studied: rats after inhibition of tryptophan-5-hydroxylase with p -chlorophenylalanine (pcpa) and subjects with a chronic lesion in the area of the raphe nucleus. The net accumulation of both measured 5-hydroxyindoles was diminished in rat cerebral cortex after degeneration of 5-HT containing nerve endings, compared with control animals and pcpa-treated rats. These results indicate that the formation of 5-HT in the cerebral cortex from exogenous l -5-HTP, after inhibition of the peripheral aromatic amino acid decarboxylase, occurs predominantly in 5-HT containing nerve endings possibly by a specific 5-HTP-decarboxylating enzyme.  相似文献   

3.
—The half-life of tryptophan 5-hydroxylase (EC 1.14.3) in rats was estimated from the return of enzyme activity after administration of p-chlorophenylalanine and from the decline of enzyme activity in spinal cord after transection or an intraspinal injection of colchicine. The half-life was 2–3 days. Axonal transport of enzyme, estimated from the reappearance of activity in consecutive portions of spinal cord after treatment with p-chlorophenylalanine, was of the order of 5–7 mm/day. This rate is characteristic of 'slow’axonal flow. Our results suggest that changes in the synthesis of new enzyme are probably not responsible for acute changes in the turnover of serotonin.  相似文献   

4.
We have used double-label in situ hybridization techniques to examine the cellular localization of GABAB receptor mRNA in relation to serotonin transporter mRNA and glutamic acid decarboxylase mRNA in the rat dorsal raphe, median raphe and raphe magnus nuclei. The degree of cellular co-localization of these markers notably varied among the different nuclei. In the dorsal raphe, cell bodies showing GABAB receptor mRNA were very abundant, the 85% being also labelled for serotonin transporter mRNA, and a low proportion (5%) showing glutamic acid decarboxylase mRNA. In the median raphe, the level of co-expression of GABAB receptor mRNA with serotonin transporter mRNA was significantly lower. Some cells were also identified that contained GABAB receptor mRNA in the absence of either one of the other mRNA species studied. Our results support the presence of GABAB receptors in serotonergic as well as GABAergic neurones in the dorsal and median raphe, providing the anatomical basis for the reported dual inhibitory/disinhibitory effect of the GABAB agonist baclofen on serotonergic function.  相似文献   

5.
6.
Abstract: Tryptophan hydroxylase distribution was examined across the nuclei raphe dorsalis, medianus, and pontis of the adult rat, under basal conditions and 2 days after a single injection of p -chlorophenylalanine, an irreversible tryptophan hydroxylase inhibitor. Tryptophan hydroxylase-expressing cells were numbered in transverse sections processed for immunohistochemistry, and the area of tryptophan hydroxylase distribution was delineated in adjacent sections transferred onto nitrocellulose and processed for immunoautoradiography. Two distinct areas were visualized: an inner zone, corresponding to the area displaying tryptophan hydroxylase-immunoreactive cells (so-called somatic area), and an outer zone, here called perisomatic, devoid of perikarya yet rich in tryptophan hydroxylase-positive neuropil in the histological sections. After treatment with p -chlorophenylalanine, a significant decrease in the number of tryptophan hydroxylase-immunoreactive cells could be observed only in the rostral raphe dorsalis, particularly within its ventromedian and dorsomedian subdivisions. In all raphe nuclei, the topological reconstruction of the somatic area was not modified. Based on the densitometric measurements in the immunoautoradiographs, however, a dramatic decrease in the content, concentration, and volume of expression of tryptophan hydroxylase could be documented in the three raphe nuclei. Detailed analysis of these results led to the conclusion that (a) tryptophan hydroxylase expression is differentially regulated in different serotoninergic cell body subpopulations of the raphe, some of which are more sensitive to p -chlorophenylalanine, and (b) distribution of tryptophan hydroxylase protein is modified also in the somatodendritic area in all raphe nuclei.  相似文献   

7.
Studies on serotonin in the insect nervous system has long been neglected, although serotonin is a putative neurotransmitter. During the course of this study the serotonin content was found to be significantly higher than that found in mammalian midbrain. Parachlorophenylalanine was found to inhibit the first step of the biosynthetic pathway by inhibiting tryptophan-hydroxylase enzyme and leading to alterations in the concentrations of metabolites such as 5-hydroxy tryptophan, 5-hydroxy indole acetic acid and tryptophan. Using a dose of 15 μg/g the inhibitory effect was not long lasting and recovery was observed to restore the normal levels. Higher trytophan levels were observed after a certain period of P-chlorophenylalanine treatment because there was a block in the biosynthetic path and tryptophan could not be utilized for 5-HT synthesis. A negative correlation between brain tryptophan and protein content was observed in both the cases of P-chlorophenylalanine and reserpine treatments.  相似文献   

8.
In vivo microdialysis in conscious rats was used to examine the effect of clozapine on serotonin (5-hydroxytryptamine, 5-HT) efflux in the prefrontal cortex and dorsal raphe nucleus and dopamine efflux in the prefrontal cortex. Both systemic and local administration of clozapine (systemic, 10 or 20 mg/kg, i.p.; local, 100 microM) increased 5-HT efflux in the dorsal raphe. However, in the prefrontal cortex, dialysate 5-HT increased when clozapine (100 microM) was administered through the probe, while no effect was observed when it was administered systemically. By pretreatment with the selective 5-HT1A receptor antagonist p-MPPI (3 mg/kg, i.p.), systemic treatment of clozapine (10 mg/kg, i.p.) significantly increased 5-HT efflux in the prefrontal cortex. This result suggests that the ability of clozapine to enhance the extracellular concentrations of 5-HT in the dorsal raphe attenuates this drug's effect in the frontal cortex, probably through the stimulation of 5-HT1A somatodendritic autoreceptors in the dorsal raphe. We also found that pretreatment with p-MPPI (3 mg/kg, i.p.) attenuated by 45% the rise in cortical dopamine levels induced by clozapine (10 mg/kg, i.p.). These findings imply that the reduction in serotonergic input from the dorsal raphe nucleus induced by clozapine could lead to an increase in dopamine release in the prefrontal cortex.  相似文献   

9.
A single intraventricular injection of tetanus toxin produced a time-dependent elevation of serotonin levels in brain and spinal cord of adult rats. This tetanus toxin-induced increase was produced in areas of high density of serotonergic innervation, such as the hypothalamus, hippocampus, and spinal cord. Little or no effect was found in the thalamus, cerebellum, and frontal cortex, areas that are poorly innervated by serotonergic terminals. The responses of catecholamines (no change in dopamine level and generalized decrease in norepinephrine) pointed to a specific action of tetanus toxin on the serotonergic system. Stereotaxic injections of tetanus toxin in dorsal or magnus raphe nuclei did not have an evident effect on biogenic amine levels in the brain and spinal cord, respectively. Because direct stereotaxic injections of the toxin in the hypothalamus or hippocampus produced significant serotonin increases in both areas, it is proposed that tetanus toxin interacts with presynaptic targets to produce serotonin accumulation; this is probably due in part to an activation of tryptophan 5-hydroxylase.  相似文献   

10.
Prenatal exposure of pregnant rats to methylazoxymethanol acetate (MAM) induces microencephaly in the offspring. In the present study of these microencephalic rats (MAM rats) we used quantitative autoradiography to investigate [3H] paroxetine binding sites, which are a selective marker of serotonin (5-HT) transporters (5-HTT). The binding in the accumbens, cortex, hippocampus, and dorsolateral thalamus was significantly increased in MAM rats, compared to the control rats, while there was a significant decrease in the dorsal raphe nucleus of the MAM rats. The levels of 5-HTT mRNA in the dorsal raphe nuclei were analyzed by in situ hybridization, which revealed a significant decrease in 5-HTT mRNA-positive neurons in the MAM rats compared to the control rats. The results imply serotonergic hyperinnervation in the cerebral hemispheres of MAM rats, while a target-dependent secondary degeneration of 5-HT neurons might be induced in the dorsal raphe nuclei of MAM rats.  相似文献   

11.
The effect of the analgesic agent, acetaminophen was determined on rat forebrain serotonin levels as well as hepatic tryptophan-2,3-dioxygenase (TDO) activity and urinary 5-hydroxyindole acetic acid (5-HIAA). The results show that acetaminophen administration (100mg/kg) over three hours does not affect the holoenzyme of tryptophan-2,3-dioxygenase but significantly inhibits the apoenzyme. This inhibition is accompanied by a concomitant rise in forebrain serotonin levels. This phenomenon is also accompanied by a reduction in urinary 5-HIAA levels. These results suggest that acetaminophen use is accompanied by changes in brain serotonin levels due to inhibition of hepatic tryptophan-2,3-dioxygenase activity. This in turn could explain the possible abuse potential of acetaminophen and its effects on mood at high doses.  相似文献   

12.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

13.
H Echizen  C R Freed 《Life sciences》1984,34(16):1581-1589
The effect of drug-induced hypertension on neurotransmitter release from dorsal raphe nucleus was studied by in vivo electrochemical electrodes in urethane anesthetized male Sprague-Dawley rats. Carbon paste electrodes were stereotaxically placed into dorsal raphe nucleus and neurotransmitter release was estimated electrochemically. Blood pressure was recorded from a femoral arterial catheter. Voltammograms taken from dorsal raphe nucleus showed two distinct peaks corresponding to norepinephrine and 5-hydroxyindole acetic acid (5-HIAA). After basal blood pressure and neurotransmitter release were monitored for 30 min, blood pressure was raised 50 mmHg by continuous intravenous infusion of L-phenylephrine hydrochloride. Drug infusion was discontinued after 50 min, but blood pressure and neurotransmitter release were measured for an additional 2 hr. Results showed that the 5-HIAA response increased immediately after the initiation of hypertension and remained elevated. By contrast, norepinephrine release initially decreased, then returned to the basal level and then rose in parallel with 5-HIAA to a level above baseline as drug-induced hypertension was discontinued. The same experimental protocol was used to study the electrochemical response to drug-induced hypotension. Blood pressure was lowered 20 mmHg by intravenous infusion of sodium nitroprusside dihydrate. During hypotension, no changes were seen in either transmitter response. However, as reflex hypertension appeared following discontinuation of the sodium nitroprusside infusion, the 5-HIAA response increased and the norepinephrine response decreased. These results show that drug-induced and reflex hypertension reduce norepinephrine release and increase serotonin turnover in dorsal raphe nucleus in anesthetized normotensive rats. These reciprocal changes appear to be a part of the neural response to hypertension.  相似文献   

14.
1. Osborne-Mendel (O-M) rats displayed differences in brain and systemic tryptophan metabolism. O-M rats had decreased brainstem tryptophan-5-hydroxylase activity and decreased serotonin (5-HT) levels as compared to Sprague-Dawley rats. However, brain tryptophan levels were actually increased in O-M rats. Norepinephrine, dopamine and 5-hydroxyindole-3-acetic acid levels were not different between strains. 2. Pineal serotonin levels were increased in O-M rats. 3. Liver tryptophan 2,3-dioxygenase activity was increased in O-M rats while tyrosine aminotransferase activity was not different between strains. 4. Total blood cholesterol was decreased in O-M rats while triglycerides, free fatty acids and albumin was not different between strains. Total serum tryptophan was not different between strains while O-M rats had an increased level of free (unbound) tryptophan.  相似文献   

15.
Abstract— 5-Hydroxytryptamine (5-HT) synthesis has been determined in the rat brain by measuring the 5-[3H]HT formed from [3H]tryptophan in the presence of monoamine oxidase inhibitor. Electrical stimulation in the region of the midbrain raphe nucleus increased formation of 5-[3H]HT by over 100 per cent, although the level of endogenous 5-HT and the concentration and specific activity of tryptophan were unchanged; the results are interpreted in terms of a two-compartment model. The optimum stimulation parameters were determined. Three days after a single dose of the tryptophan hydroxylase inhibitor p -chlorophenylalanine, stimulation increased 5-HT synthesis by the same percentage as in untreated animals. It was also found that after the end of an hour's stimulation, synthesis returned to control values in under an hour. These results suggest that the rise in synthesis of the amine on stimulation is not due to induction of tryptophan hydroxylase, but more likely to an increase in the activity of existing enzyme.  相似文献   

16.
The mechanism of action of commonly used antidepressants remains an issue of debate. In the experiments reported here we studied the effects of three representative compounds, the selective serotonin reuptake inhibitor fluoxetine, the selective serotonin reuptake enhancer tianeptine and the selective norepinephrine reuptake inhibitor desipramine on the structure of central serotonin pathways after a 4-week administration. We found that the serotonin modulators fluoxetine and tianeptine, but not desipramine, increase the density of 5-HT and serotonin transporter (SERT)-immunoreactive axons in the neocortical layer IV and certain forebrain limbic areas, such as piriform cortex and the shell region of nucleus accumbens. These changes were noted in the absence of a significant effect of serotonin antidepressants on the expression of tryptophan hydroxylase (TPH-2), i.e. the rate-limiting enzyme for 5-HT biosynthesis and of SERT at the mRNA level. In addition, we found that anterogradely filled terminal axons from injections of biotinylated dextran amine into the dorsal raphe showed significantly more branching in animals treated with fluoxetine compared with animals treated with liposyn vehicle. Our findings suggest that antidepressants may exert very selective structural effects on their cognate monoamine systems in normal animals and raise the possibility that neurotrophic mechanisms may play a role in their clinical efficacy.  相似文献   

17.
Synthesis of Serotonin in Traumatized Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Previous studies have demonstrated that focal freezing lesions in rats cause a widespread decrease of cortical glucose use in the lesioned hemisphere and this was interpreted as a reflection of depression of cortical activity. The serotonergic neurotransmitter system was implicated in these alterations when it was shown that (1) cortical serotonin metabolism was increased widely in focally injured brain and (2) inhibition of serotonin synthesis prevented the development of cortical hypometabolism. In the present studies we applied an autoradiographic method that uses the accumulation of the 14C-labeled analogue of serotonin α-methylserotonin to assess changes in the rate of serotonin synthesis in injured brain. The results confirmed that 3 days after the lesion was made, at the time of greatest depression of glucose use, serotonin synthesis was significantly increased in cortical areas throughout the injured hemisphere. The increase was also seen in the dorsal hippocampus and area CA3, as well as in the medial geniculate and dorsal raphe, but not in any other subcortical structures including median raphe. Present results suggest that the functional changes in the cortex of the lesioned hemisphere are associated with an increased rate of serotonin synthesis mediated by activation of the dorsal raphe. We also documented by α-[14C]aminoisobutyric acid autoradiography that there was increased permeability of the blood-brain barrier, but this was restricted to the rim of the lesion.  相似文献   

18.
M A Geyer 《Life sciences》1980,26(6):431-434
Administration of either indoleamine or phenylethylamine hallucinogens selectively increased the level of serotonin within cell bodies of both the dorsal and median raphe nuclei. Changes in intracellular serotonin levels were quantitated by a new cytofluorimetric technique which relies on a measure of fluorescence fading to detect changes in serotonin and distinguish them from changes in catecholamines.  相似文献   

19.
The effects of acute and chronic treatments with D-fenfluramine on the regional rates of serotonin (5-hydroxy-tryptamine; 5-HT) synthesis were investigated using the -[14C]methyl-L-tryptophan (-[14C]MTrp) autoradiographic method. In the first series of experiments, acute D-fenfluramine treatment (5 mg/kg; i.p.) given 20 min before the tracer injection significantly (p < 0.05) decreased 5-HT synthesis in the dorsal raphe, and significantly (p < 0.05) increased the rates in the cerebral cortices and caudate nucleus, when compared to the rates in the control rats (saline treated). In a second series of experiments, following a 7-day treatment with D-fenfluramine (5 mg/kg/day; i.p.), a significant (p < 0.05) decrease of 5-HT synthesis, in the dorsal raphe was observed, and significant (p < 0.05) increases were observed in the hypothalamus, the dorsal thalamus, the medial and lateral geniculate body and some brain stem regions (locus ceruleus, inferior and superior colliculus). No significant changes were observed in the cerebral cortices.  相似文献   

20.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号