首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The heparan sulfate proteoglycan/heparin-binding proteins of the human lung carcinoma cell line LX-1 have been identified, partially purified, and characterized. Analysis of the binding of [3H]heparin to membranes isolated from LX-1 cells indicated the presence of two classes of binding sites, with Kd values of approximately 2 x 10(-10) and 4 x 10(-8) M and corresponding Bmax values of 1 x 10(5) and 2 x 10(7) binding sites/cell. Binding was also observed with isolated heparan sulfate chains and with intact heparan sulfate proteoglycan isolated from two different cell types. With each ligand, binding was inhibited by addition of unlabeled heparin. The binding proteins were extracted from LX-1 cell membranes in detergent solution, and two size classes of binding proteins were identified by overlaying transblots of electrophoretically separated proteins with radioactive ligands. These two classes of binding proteins were shown to contain doublets with estimated molecular masses of approximately 16 kDa (HSBP1A and HSBP1B) and approximately 32 kDa (HSBP2A and HSBP2B). The proteins were partially purified by heparin-Sepharose chromatography and shown to bind heparin and heparan sulfate proteoglycan. By amino acid composition, N-terminal amino acid sequence, and reactivity with antibody, HSBP1A was shown to be very similar to histone 2B; HSBP1B may also be related to histone 2A. HSBP2A and HSBP2B, however, did not react with antibodies to the major histones and had compositions different from one another and from HSBP1.  相似文献   

2.
Activation of endothelial cells by cytokines and endotoxin causes procoagulant and pro-inflammatory changes over a period of hours. We postulated that the same functional state might be achieved more rapidly by changes in the metabolism of heparan sulfate, which supports many of the normal functions of endothelial cells. We previously found that binding of anti-endothelial cell antibodies and activation of complement on endothelial cells causes the rapid shedding of endothelial cell heparan sulfate. Here we report the biochemical mechanism responsible for the release of the heparan sulfate. Stimulation of endothelial cells by anti-endothelial cell antibodies and complement resulted in the release of 35S-heparan sulfate proteoglycan and partially degraded 35S-heparan sulfate chains. Degradation of the 35S-heparan sulfate chains was not necessary for release since heparin and suramin prevented cleavage of the heparan sulfate but did not inhibit release from stimulated endothelial cells. The 35S-heparan sulfate proteoglycan released from endothelial cells originated from the cell surface and had a core protein similar in size (70.5 kD) to syndecan-1. Release was due to proteolytic cleavage of the protein core by serine and/or cysteine proteinases since the release of heparan sulfate was inhibited 87% by antipain and 53% by leupeptin. Release of heparan sulfate coincided with a decrease of ∼︁7 kD in the mass of the protein core and with a loss of hydrophobicity of the proteoglycan, consistent with the loss of the hydrophobic transmembrane domain. The cleavage and release of cell-surface 35S-heparan sulfate proteoglycan might be a novel mechanism by which endothelial cells may rapidly acquire the functional properties of activated endothelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The subcellular localization of human skin chymase to mast cell granules was established by immunoelectron microscopy, and binding of chymase to the area of the dermo-epidermal junction, a basement membrane, was demonstrated immunocytochemically in cryosections incubated with purified proteinase prior to immunolabeling. Because heparin and heparan sulfate proteoglycans are major constituents of mast cell granules and basement membranes, respectively, the ability of chymase to bind to glycosaminoglycans (GAG) was investigated. Among a variety of GAGs, only binding of chymase to heparin and heparan sulfate appears physiologically significant. Binding was ionic strength-dependent, involved amino groups on the proteinase, and correlated with increasing GAG sulfate content, indicating a predominantly electrostatic association. Interaction with heparin was observed in solutions containing up to 0.5 M NaCl, and interaction with heparan sulfate was observed in solutions containing up to 0.3 M NaCl. Binding of heparin did not detectably affect catalysis of peptide substrates, but may reduce accessibility of proteinase to protein substrates. Measurements among a series of serine class proteinases indicated that heparin binding was a more common property of mast cell proteinases than proteinases stored in other secretory granules. Binding of chymase to heparin is likely to have a storage as well as a structural role within the mast cell granule, whereas binding of chymase to heparan sulfate may have physiological significance after degranulation.  相似文献   

4.
We studied binding and growth inhibitory properties of different glycosaminoglycans in growing and differentiated BC3H-1 muscle cells. Heparin (10 micrograms/ml) and heparan sulfate (10 micrograms/ml) significantly inhibited DNA synthesis in growing and differentiated cells, as monitored by [3H]thymidine incorporation. Binding of heparin to BC3H-1 cells was specific and time-dependent. Heparan sulfate was the only glycosaminoglycan able to displace [3H]heparin (IC50, 3.2 x 10(-7) M), although it was 10-fold less effective than heparin itself (IC50, 3.6 x 10(-8) M). Scatchard analysis revealed the existence of high-affinity heparin binding sites (Kd, 5 x 10(-8) M). Furthermore, heparin inhibited serum-induced stimulation of inositol lipid turnover. Taken together, these results indicate that heparin inhibits BC3H-1 cell growth by interacting with the cell surface, possibly disrupting the flow of growth factor-related mitogenic signalling.  相似文献   

5.
Fannon M  Forsten KE  Nugent MA 《Biochemistry》2000,39(6):1434-1445
Basic fibroblast growth factor (bFGF) binds to cell surface tyrosine kinase receptor proteins and to heparan sulfate proteoglycans. The interaction of bFGF with heparan sulfate on the cell surface has been demonstrated to impact receptor binding and biological activity. bFGF receptor binding affinity is reduced on cells that do not express heparan sulfate. The addition of soluble heparin or heparan sulfate has been demonstrated to rescue the bFGF receptor binding affinity on heparan sulfate deficient cells yet has also been shown to inhibit binding under some conditions. While the chemical requirements of the heparin-bFGF-receptor interactions have been studied in detail, the possibility that heparin enhances bFGF binding in part by physically associating with the cell surface has not been fully evaluated. In the study presented here, we have investigated the possibility that heparin binding to the cell surface might play a role in modulating bFGF receptor binding and activity. Balb/c3T3 cells were treated with various concentrations of sodium chlorate, so as to express a range of endogenous heparan sulfate sites, and [(125)I]bFGF binding was assessed in the presence of a range of heparin concentrations. Low concentrations of heparin (0.1-30 nM) enhanced bFGF receptor binding to an extent that was inversely proportional to the amount of endogenous heparan sulfate sites present. At high concentrations (10 microM), heparin inhibited bFGF receptor binding in cells under all conditions. The ability of heparin to stimulate and inhibit bFGF-receptor binding correlated with altered bFGF-stimulated tyrosine kinase activity and cell proliferation. Under control and chlorate-treated conditions, [(125) I]heparin was observed to bind with a high affinity to a large number of binding sites on the cells (K(d) = 57 and 50 nM with 3.5 x 10(6) and 3.6 x 10(6) sites/cell for control and chlorate-treated cells, respectively). A mathematical model of this process revealed that the dual functions of heparin in bFGF binding were accurately represented by heparin cell binding-mediated stimulation and soluble heparin-mediated inhibition of bFGF receptor binding.  相似文献   

6.
Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.  相似文献   

7.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

8.
The effects of different carbohydrates on cell-to-cell adhesion were examined in an aggregation assay, which consisted of swirling a suspension of cells and monitoring the loss of single cells with a Coulter Counter. Of the carbohydrates tested, only heparin and dextran sulfate induced cell aggregation. This effect occurred in freshly isolated mouse splenocytes and in cultured cells of lymphoid origin (P388, YAA-CI) but not in cell lines of fibroblastic origins (3T3, SV-3T3, BHK, and PY-BHK). Using the YAA-CI cell line for further study, we found that aggregation could be induced by relatively small amounts of heparin (less than 10 micrograms/ml). Binding experiments with 3H-heparin showed that under normal physiological conditions each YAA-CI cell bound approximately 2 X 10(6) molecules of heparin at saturation with a Kd of 3.5 X 10(-7) M. This binding was blocked by both unlabelled heparin and dextran sulfate but not by other carbohydrates. When the pH of the medium was decreased, the heparin-induced aggregation was inhibited, and the Kd of the 3H-heparin binding was increased. In a similar fashion, when the ionic strength of the medium was increased, heparin-induced aggregation was inhibited and the Kd of the interaction was increased. These results suggest that the aggregation is inversely related to the Kd of the interaction and that the binding of heparin to the cell surface is primarily of an ionic nature.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) and HSV-2 plaque production was inhibited by treating cells with soluble forms of HSV-1 glycoprotein D (gD-1t) and HSV-2 glycoprotein D (gD-2t). Both glycoproteins inhibited entry of HSV-1 and HSV-2 without affecting virus adsorption. In contrast, a soluble form of HSV-2 glycoprotein B had no effect on virus entry into cells. Specific binding of gD-1t and gD-2t to cells was saturable, and approximately 4 x 10(5) to 5 x 10(5) molecules bound per cell. Binding of gD-1t was markedly reduced by treating cells with certain proteases but was unaffected when cell surface heparan sulfate glycosaminoglycans were enzymatically removed or when the binding was carried out in the presence of heparin. Together, these results suggest that gD binds to a limited set of cell surface receptors which may be proteins and that these interactions are essential for subsequent virus entry into cells. However, binding of gD to its receptors is not required for the initial adsorption of virus to the cell surface, which involves more numerous sites (probably including heparan sulfate) than those which mediate gD binding.  相似文献   

10.
Cell surface heparan sulfate proteoglycan (HSPG) from metastatic mouse melanoma cells initiates cell adhesion to the synthetic peptide FN-C/H II, a heparin-binding peptide from the 33-kD A chain-derived fragment of fibronectin. Mouse melanoma cell adhesion to FN-C/H II was sensitive to soluble heparin and pretreatment of mouse melanoma cells with heparitinase. In contrast, cell adhesion to the fibronectin synthetic peptide CS1 is mediated through an alpha 4 beta 1 integrin and was resistant to heparin or heparitinase treatment. Mouse melanoma cell HSPG was metabolically labeled with [35S]sulfate and extracted with detergent. After HPLC-DEAE purification, 35S-HSPG eluted from a dissociative CL-4B column with a Kav approximately 0.45, while 35S-heparan sulfate (HS) chains eluted with a Kav approximately 0.62. The HSPG contained a major 63-kD core protein after heparitinase digestion. Polyclonal antibodies generated against HSPG purified from mouse melanoma cells grown in vivo also identified a 63-kD core protein. This HSPG is an integral plasma membrane component by virtue of its binding to Octyl Sepharose affinity columns and that anti-HSPG antibody staining exhibited a cell surface localization. The HSPG is anchored to the cell surface through phosphatidylinositol (PI) linkages, as evidenced in part by the ability of PI-specific phospholipase C to eliminate binding of the detergent-extracted HSPG to Octyl Sepharose. Furthermore, the mouse melanoma HSPG core protein could be metabolically labeled with 3H-ethanolamine. The involvement of mouse melanoma cell surface HSPG in cell adhesion to fibronectin was also demonstrated by the ability of anti-HSPG antibodies and anti-HSPG IgG Fab monomers to inhibit mouse melanoma cell adhesion to FN-C/H II. 35S-HSPG and 35S-HS bind to FN-C/H II affinity columns and require 0.25 M NaCl for elution. However, heparitinase-treated 125I-labeled HSPG failed to bind FN-C/H II, suggesting that HS, and not HSPG core protein, binds FN-C/H II. These data support the hypothesis that a phosphatidylinositol-anchored HSPG on mouse melanoma cells (MPIHP-63) initiates recognition to FN-C/H II, and implicate PI-associated signal transduction pathways in mediating melanoma cell adhesion to this defined ligand.  相似文献   

11.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

12.
A class of high-affinity binding sites that preferentially bind heparin/heparan sulfate have been identified on the external surfaces of mouse uterine epithelial cells cultured in vitro. [3H]Heparin binding to these surfaces was time-dependent, saturable, and was blocked specifically by the inclusion of unlabeled heparin or endogenous heparan sulfate in the incubation medium. A variety of other glycosaminoglycans did not compete for these binding sites. The presence of sulfate on heparin influenced, but was not essential for, recognition of the polysaccharide by the cell surface binding sites. [3H]-Heparin bound to the cell surface was displaceable by unlabeled heparin, but not chondroitin sulfate. Treatment of intact cells on ice with trypsin markedly reduced [3H]heparin binding, indicating that a large fraction of the surface binding sites were associated with proteins. Scatchard analyses revealed a class of externally disposed binding sites for heparin/heparan sulfate exhibiting an apparent Kd of approximately 50 nM and present at a level of 1.3 x 10(6) sites per cell. Approximately 9-14% of the binding sites were detectable at the apical surface of cells cultured under polarized conditions in vitro. Detachment of cells from the substratum with EDTA stimulated [3H]heparin binding to cell surfaces. These observations suggested that most of the binding sites were basally distributed and were not primarily associated with the extracellular matrix. Collectively, these observations indicate that specific interactions with heparin/heparan sulfate containing molecules can take place at both the apical and basal cell surfaces of uterine epithelial cells. This may have important consequences with regard to embryo-uterine and epithelial-basal lamina interactions.  相似文献   

13.
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the fibroblast growth factor (FGF) receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation between self-associated FGFR and determines specificity for and mediates binding of activating FGF. Here we show that only the fraction of commercial heparin or rat liver heparan sulfate which binds to immobilized antithrombin formed an FGF-binding binary complex with the ectodomain of the FGFR kinase. Conversely, only the fraction of heparin that binds to immobilized FGFR inhibited Factor Xa in the presence of antithrombin. Only the antithrombin-bound fraction of heparin competed with (3)H-heparin bound to FGFR in absence of FGF, whereas both antithrombin-bound and unretained fractions competed with radiolabeled heparin bound independently to FGF-1 and FGF-2. The antithrombin-bound fraction of heparin was required to support the heparin-dependent stimulation of DNA synthesis of endothelial cells by FGF-1. The requirement for divalent cations and the antithrombin-binding motif distinguish the role of heparan sulfate as an integral subunit of the FGFR complex from the wider range of effects of heparan sulfates and homologues on FGF signaling through FGFR-independent interactions with FGF.  相似文献   

14.
Foot-and-mouth disease virus (FMDV) enters cells by attaching to cellular receptor molecules of the integrin family, one of which has been identified as the RGD-binding integrin alpha(v)beta3. Here we report that, in addition to an integrin binding site, type O strains of FMDV share with natural ligands of alpha(v)beta3 (i.e., vitronectin and fibronectin) a specific affinity for heparin and that binding to the cellular form of this sulfated glycan, heparan sulfate, is required for efficient infection of cells in culture. Binding of the virus to paraformaldehyde-fixed cells was powerfully inhibited by agents such as heparin, that compete with heparan sulfate or by agents that compete for heparan sulfate (platelet factor 4) or that inactivate it (heparinase). Neither chondroitin sulfate, a structurally related component of the extracellular matrix, nor dextran sulfate appreciably inhibited binding. The functional importance of heparan sulfate binding was demonstrated by the facts that (i) infection of live cells by FMDV could also be blocked specifically by heparin, albeit at a much higher concentration of inhibitor; (ii) pretreatment of cells with heparinase reduced the number of plaques formed compared with that for untreated cells; and (iii) mutant cell lines deficient in heparan sulfate expression were unable to support plaque formation by FMDV, even though they remained equally susceptible to another picornavirus, bovine enterovirus. The results show that entry of type O FMDV into cells is a complex process and suggest that the initial contact with the cell surface is made through heparan sulfate.  相似文献   

15.
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.  相似文献   

16.
The presence of heparin in in vitro media has been implicated in improved fertility parameters of bull spermatozoa. In a previous study, Zhang et al. (25) obtained an estimate of bull nonreturn rates based on spermatozoal concentration, motility and zona pellucida binding (24). The objective of this study was to test for a relationship between fertility parameters previously estimated for the same batch of cryopreserved semen (25) and amount of heparin bound to spermatozoa. 3H-heparin binding to spermatozoa was assessed by radioimmunoassay, and statistical correlations were drawn to previously measured sperm characteristics. Preliminary experiments established optimal binding conditions of 25 degrees C, and 60 min incubation with 3H-heparin at a concentration of 50,000 cpm. 3H-heparin bound to an average of 2.2 x 10(6) receptors/cell with a Kd of 2.0 x 10(-7) M. The total 3H-heparin bound to spermatozoa from different bulls was significantly different (P<0.003). However, the total 3H-heparin bound to spermatozoa was not correlated with any measured sperm parameter, including zona pellucida binding, embryo cleavage and blastocyst formation, and 56-day nonreturn rates (P>0.19). Thus, the total amount of heparin bound to the surface of spermatozoa may not be relevant to fertilizing ability.  相似文献   

17.
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.  相似文献   

18.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

19.
Binding activity of the radioactive cage convulsant [35S]t-butylbicyclophosphorothionate was solubilized from rat brain membranes using the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio] propanesulfonate. Binding (KD = 26 nM, Bmax = 0.4 pmol/mg protein) was inhibited by picrotoxin and related convulsants and by barbiturates and related depressants that interact with gamma-aminobutyric acid and benzodiazepine receptors via the picrotoxinin binding site. The convulsant/barbiturate binding activity chromatographed on gel filtration as a single peak coinciding with the benzodiazepine/gamma-aminobutyric acid receptor protein complex.  相似文献   

20.
The distribution of inositol 1,4,5-trisphosphate and ryanodine binding sites between plasma membrane, microsomal, and mitochondrial fractions of rat liver were compared. IP3 bound mostly to the plasma membrane fraction (Kd = 6 nM; Bmax = 802 fmol/mg protein). Some IP3 binding sites were also present in the microsomal and mitochondrial fractions (Kd = 2.5 and 2.9 nM; Bmax = 35 and 23 fmol/mg protein respectively). The possibility that these binding sites are due to contamination of the fractions with plasma membrane cannot be excluded. Binding of IP3 to the plasma membrane was inhibited by heparin but not by either caffeine or tetracaine. High-affinity ryanodine binding sites were present mostly in the microsomal fraction (Kd = 13 nM; Bmax = 301 fmol/mg protein). Lower affinity binding sites were also found to be present in the mitochondrial and plasma membrane fractions. Binding of ryanodine to the microsomal fraction was inhibited by both caffeine and tetracaine but not by heparin. These data demonstrate that IP3 and ryanodine binding sites are present in different cellular compartments in the liver. These differences in the localization of the binding sites might be indicative of their functional differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号