首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In termites, the soldiers’ sex ratio is often biased toward one sex. Unlike in the Hymenoptera, this bias cannot easily be explained by relatedness asymmetries because termites are diploid. Matsuura proposed that when large body size is adaptive for colony defence (e.g. in case of phragmotic defence) then the larger sex (given sexual size dimorphism exists) should be more likely to reach a threshold size and develop into soldiers. This would explain biased sex ratios. Matsuura validated his hypothesis for four Reticulitermes species. Here, we tested his hypothesis for two species of Cryptotermes with phragmotic defence. These drywood termites have a life type that is thought to be ancestral in termite’s evolution, thus giving us potential insights into the evolution of the soldier caste. In one of these species, the sex ratio of soldiers was highly female biased, but we could not support Matsuura’s hypothesis. Both species lacked sexual size dimorphism in all castes. Additionally, in both species, the sex ratio of helpers and sexuals did not deviate from a 1:1 ratio, and hence can also not account for the bias observed in soldiers. However, this study showed that there were behavioural differences between the sexes in both species, which could shed some light on biased sex ratio in soldiers. Our findings also indicate that the developmental pathway taken by individuals reflects a ‘decision’ at the colony level. The discovery of behavioural differences between sexes in termites should open the way to similar studies in other taxa with helpers/ workers of both sexes, as it might reveal more task partitioning in colonies than previously thought and it raises questions concerning the selective pressures that acted on caste evolution in termites. Received 30 October 2007; revised 17 January and 27 February; accepted 4 March 2008.  相似文献   

2.
Sex-determination is commonly categorized as either “genetic” or “environmental”—a classification that obscures the origin of this dichotomy and the evolution of sex-determining factors. The current focus on static outcomes of sex-determination provides little insight into the dynamic developmental processes by which some mechanisms acquire the role of sex determinants. Systems that combine “genetic” pathways of sex-determination (i.e., sex chromosomes) with “environmental” pathways (e.g., epigenetically induced segregation distortion) provide an opportunity to examine the evolutionary relationships between the two classes of processes and, ultimately, illuminate the evolution of sex-determining systems. Taxa with sex chromosomes typically undergo an evolutionary reduction in size of one of the sex chromosomes due to suppressed recombination, resulting in pronounced dimorphism of the sex chromosomes, and setting the stage for emergence of epigenetic compensatory mechanisms regulating meiotic segregation of heteromorphic sex chromosomes. Here we propose that these dispersed and redundant regulatory mechanisms enable environmental contingency in genetic sex-determination in birds and account for frequently documented context-dependence in avian sex-determination. We examine the evolution of directionality in such sex-determination as a result of exposure of epigenetic regulators of meiosis to natural selection and identify a central role of hormones in integrating female reproductive homeostasis, resource allocation to oocytes, and offspring sex. This approach clarifies the evolutionary relationship between sex-specific molecular genetic mechanisms of sex-determination and non-sex-specific epigenetic regulators of meiosis and demonstrates that both can determine sex. Our perspective shows how non-sex-specific mechanisms can acquire sex-determining function and, by establishing the explicit link between physiological integration of oogenesis and sex-determination, opens new avenues to the studies of adaptive sex-bias and sex-specific resource allocation in species with genetic sex-determination.  相似文献   

3.
4.
5.
The Mongolian gerbil (Meriones unguiculatus) serves as an animal model for a wide range of diseases. A practical limitation in its use is the definition of the hygienic status, as not much is known about viruses that potentially infect gerbils and might be transmitted to other rodents. As successful re-derivation was recently described for gerbils, we now aimed at investigating which mouse viruses induce seroconversion in gerbils and might be transmitted to mice. Gerbils were inoculated with viral agents of mice and co-housed with mouse contact sentinels. Seroconversion in gerbils was observed after oronasal inoculation with Sendai virus (SeV), mammalian orthoreovirus serotype 3 (Reo-3) and rotavirus A (RV-A, EDIM), seroconversion to RV-A also in sentinel mice. Pneumonia virus of mice (PVM) was not detected by serology but by polymerase chain reaction in gerbils and respective sentinel mice. No seroconversion towards or transmission of murine hepatitis virus, murine norovirus, minute virus of mice or mouse cytomegalovirus was detected. Anti-gerbil IgG antibodies did not increase sensitivity of indirect immunofluorescence (IFA) compared with anti-mouse IgG. In conclusion, seroconversion to SeV, Reo-3 and RV-A as well as transmission of RV-A and PVM indicate that these agents should be included in health monitoring of gerbils. Furthermore, anti-mouse IgG is suitable as a secondary antibody for IFA with gerbil serum.  相似文献   

6.
7.
8.
The thymus is required for the differentiation of T lymphocytes. A new study in lampreys indicates that the pharyngeal epithelium of the gill basket supports the development of T-like cells, suggesting the existence of a primitive thymus in these oldest of vertebrates.  相似文献   

9.
The best opportunities at present for improving the results in the treatment of patients with cancer of the lung are by way of (a) utilizing the information obtained on routine x-ray examination of the chest, (b) decreasing the delay between the time of the first symptoms and the time the patient consults a physician, and (c) decreasing the delay between the time the patient first consults a physician and the time the cancer is surgically removed. The medical profession must increase its index of suspicion of cancer of the lung and persist in efforts to make a diagnosis when lung cancer is suspected. Exploratory thoracotomy should be used in suspicious cases when the diagnosis cannot be established by other methods.  相似文献   

10.
11.
12.
Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker-Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200-750 m) populations showed significant genetic differentiation (Fst 0.11-0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03-0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus.  相似文献   

13.
The reliable indicator hypothesis proposes that exaggeratedsexual swellings in female primates serve as honest signalsof female quality that function in female—female competitionover mates. We examined a version of this hypothesis usinginterspecific data to test whether exaggerated sexual swellingsare associated with female mating competition, as measured usingthe adult sex ratio, female canine size, and expected femalemating synchrony. The ratio of females to males and relativecanine size declined over evolutionary transitions in swellingstate, thus providing no support for the reliable indicatorhypothesis. Expected female mating synchrony increased over evolutionary transitions in swelling state, but this patterndid not approach significance, and the patterns were oppositeto predictions when controlling for the number of males inthe group. In addition to these comparative tests, we reviewedevidence concerning individual attributes of females relativeto characteristics of their swellings. Contrary to the reliableindicator hypothesis, the least fertile females, or those leastlikely to raise surviving offspring, often have larger swellings.We consider the statistical power of our tests, discuss thetheoretical and empirical bases for our comparative predictions,and consider other lines of evidence needed to test the reliableindicator hypothesis. We also discuss an alternative hypothesis, the graded signal hypothesis, which combines the benefits ofbiasing and confusing paternity through a novel mechanism andis testable in the field and the laboratory.  相似文献   

14.
The origin of the sporophyte in land plants represents a fundamental phase in the plant evolution. Today this subject is controversial and, in my opinion, scarcely considered in our textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land plants: the "antithetic" and the "homologous" theory. These have never been fully resolved. The antithetic theory maintains that the sporophyte and gametophyte generations are fundamentally dissimilar and that the sporophyte originated in an ancestor organism with haplontic cycle by the zygote dividing mitotically rather than meiotically, and with a developmental pattern not copying the developmental events of the gametophyte. The sporophyte generation was an innovation of critical significance for the land-plant evolution. By contrast, the homologous theory simply stated that a mass of cells forming mitotically from the zygote adopted the same developmental plan of the gametophyte, but giving origin to a diploid sporophyte. In this context, a very important question concerns the possible ancestor or ancestors of the land plants. Considerable evidences at morphological, cytological, ultrastructural, biochemical and, especially, molecular level, strongly suggest that the land plants or Embryophyta (both vascular and non-vascular) evolved from green algal ancestor(s), similar to those belonging to the genus Coleochaete, Chara and Nitella, living today. Their organism is haploid for most of their life cycle, and diploid only in the zygote phase (haplontic cycle). On the contrary, the land plants are characterized by a diplo-haplontic life cycle. Several questions are implied in these theories, and numerous problems remain to be solved, such as, for example, the morphological difference between gametophyte and sporophyte (heteromorphism, already present in the first land plants, the bryophytes), and the strong gap existing between these last with a sporophyte dependent on the gametophyte, and the pteridophytes having the gametophyte and sporophyte generations independent. On the ground of all of the evidences on the ancestors of the land plants, the antithetic theory is considered more plausible than the homologous theory. Unfortunately, no phylogenetic relationship exists between some green algae with diplontic life cycle and the land plants. Otherwise, perhaps, it should be possible to hypothesize another scenario in which to place the origin of the alternating generations of the land plants. In this case, could the gametophyte be formed by gametes produced from the sporophyte, through their mitoses or a delayed fertilization process?  相似文献   

15.
It is of scientific and practical interest to consider the levels of cognitive ability in animals, which animals are sentient, which animals have feelings such as pain and which animals should be protected. A sentient being is one that has some ability to evaluate the actions of others in relation to itself and third parties, to remember some of its own actions and their consequences, to assess risk, to have some feelings and to have some degree of awareness. These abilities can be taken into account when evaluating welfare. There is evidence from some species of fish, cephalopods and decapod crustaceans of substantial perceptual ability, pain and adrenal systems, emotional responses, long- and short-term memory, complex cognition, individual differences, deception, tool use, and social learning. The case for protecting these animals would appear to be substantial. A range of causes of poor welfare in farmed aquatic animals is summarised.  相似文献   

16.
Direct evidence for the origin and evolution of land plant/cyanobacterial symbioses is virtually absent from the fossil record. Here we report on rare occurrences of prostrate mycorrhizal axes of the Early Devonian land plant Aglaophyton major that host a filamentous cyanobacterium, which enters the plant through the stomata and colonizes the substomatal chambers and intercellular spaces in the outer cortex. In dead ends of the intercellular system, the filaments form loops and continue growth in reverse direction. Some filaments penetrate parenchyma cells close to and within the mycorrhizal arbuscule-zone and form intracellular coils. This discovery represents the earliest direct evidence for cyanobacteria growing inside land plants, and offers a model for the types of associations that may have preceded the evolution of mutualistic land plant/cyanobacterial symbioses.  相似文献   

17.
《Developmental neurobiology》2017,77(9):1072-1085
Brain compartment size allometries may adaptively reflect cognitive needs associated with behavioral development and ecology. Ants provide an informative system to study the relationship of neural architecture and development because worker tasks and sensory inputs may change with age. Additionally, tasks may be divided among morphologically and behaviorally differentiated worker groups (subcastes), reducing repertoire size through specialization and aligning brain structure with task‐specific cognitive requirements. We hypothesized that division of labor may decrease developmental neuroplasticity in workers due to the apparently limited behavioral flexibility associated with task specialization. To test this hypothesis, we compared macroscopic and cellular neuroanatomy in two ant sister clades with striking contrasts in worker morphological differentiation and colony‐level social organization: Oecophylla smaragdina , a socially complex species with large colonies and behaviorally distinct dimorphic workers, and Formica subsericea , a socially basic species with small colonies containing monomorphic workers. We quantified volumes of functionally distinct brain compartments in newly eclosed and mature workers and measured the effects of visual experience on synaptic complex (microglomeruli) organization in the mushroom bodies—regions of higher‐order sensory integration—to determine the extent of experience‐dependent neuroplasticity. We demonstrate that, contrary to our hypothesis, O. smaragdina workers have significant age‐related volume increases and synaptic reorganization in the mushroom bodies, whereas F. subsericea workers have reduced age‐related neuroplasticity. We also found no visual experience‐dependent synaptic reorganization in either species. Our findings thus suggest that changes in the mushroom body with age are associated with division of labor, and therefore social complexity, in ants. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1072–1085, 2017  相似文献   

18.
Hearing impairment is the most common sensory disorder, present in 1 of every 500 newborns. With 46 genes implicated in nonsyndromic hearing loss, it is also an extremely heterogeneous trait. Here, we categorize for the first time all mutations reported in nonsyndromic deafness genes, both worldwide and more specifically in Caucasians. The most frequent genes implicated in autosomal recessive nonsyndromic hearing loss are GJB2, which is responsible for more than half of cases, followed by SLC26A4, MYO15A, OTOF, CDH23 and TMC1. None of the genes associated with autosomal dominant nonsyndromic hearing loss accounts for a preponderance of cases, although mutations are somewhat more frequently reported in WFS1, KCNQ4, COCH and GJB2. Only a minority of these genes is currently included in genetic diagnostics, the selection criteria typically reflecting: (1) high frequency as a cause of deafness (i.e. GJB2); (2) association with another recognisable feature (i.e. SLC26A4 and enlarged vestibular aqueduct); or (3) a recognisable audioprofile (i.e. WFS1). New and powerful DNA sequencing technologies have been developed over the past few years, but have not yet found their way into DNA diagnostics. Implementing these technologies is likely to happen within the next 5 years, and will cause a breakthrough in terms of power and cost efficiency. It will become possible to analyze most - if not all - deafness genes, as opposed to one or a few genes currently. This ability will greatly improve DNA diagnostics, provide epidemiological data on gene-based mutation frequencies, and reveal novel genotype-phenotype correlations.  相似文献   

19.
Until now, the equilibrium-point hypothesis (λ model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed. Received: 26 July 1993/Accepted in revised form: 22 December 1993  相似文献   

20.
The origins and evolution of sperm storage in Brachyura are enigmatic: sperm is either stored in seminal receptacles, accessible via the vulvae on the sixth thoracic sternite, or in spermathecae at the border between the seventh and eighth sternites. Crabs with spermathecae are collectively referred to as “podotremes” while crabs with seminal receptacles belong to the Eubrachyura. The position of gonopores is the primary basis for subdividing the Eurachyura into the Heterotremata (female vulvae + males with coxal gonopores) and Thoracotremata (female vulvae + males with sternal gonopores). We present a hypothesis about the evolution of seminal receptacles in eubrachyuran female crabs and argue that the sternal gonopore has been internalized into chitin-lined seminal receptacles and the vulva is in fact a secondary aperture. The loss of some or all of the ancestral chitinous seminal receptacle lining was linked to ventral migration of the oviduct connection. Male and female strategies are to maximize gamete fertilization. The most important variable for females is sperm supply, enhanced by long-term storage made possible by the seminal receptacle. To maximize their fertilization rates males must adapt to the structure of the seminal receptacle to ensure that their sperm are close to the oviduct entrance. The major evolutionary impetus for female mating strategies was derived from the consequences of better sperm conservation and the structure of the seminal receptacle. The advantages were all to the females because their promiscuity and sperm storage allowed them to produce more genetically variable offspring, thereby enhancing variation upon which natural selection could act. We extend our arguments to Brachyura as a whole and offer a unifying explanation of the evolution of seminal receptacles, comparing them with the spermathecae found in “Podotremata”: they were independent solutions to the same problem: maintaining sperm supply during evolutionary carcinization.Explanation of eubrachyuran mating strategies requires analysis of the mating–moulting link, indeterminate vs. determinate growth format and seminal receptacle structure. Two alternatives for each of these characters means that there are eight possible outcomes. Six of these outcomes have been realized, which we term Portunoid, Majoid, Eriphoid, Xanthoid, Cancroid, and Grapsoid–Ocypodoid strategies, respectively. Mapping these characters on to a workable phylogeny (wherein some changes to the seminal receptacle + moulting–mating links are assumed to have occurred more than once) produces the following relationships: Portunoids + Majoids are a sister group to the rest of the Eubrachyura, which fall into two sister groups, Eriphoids + Xanthoids and Cancroids + Grapsoid–Ocypodoids and the “Podotremata” is sister group to all the Eubrachyura. We conclude that what began as a race to be the first to mate was turned on its head to become a race to be last, by the evolutionary changes to the seminal receptacle. Eubrachyuran females were advantaged by greater reproductive autonomy, more opportunity to mate with other males, resulting in more genetically variable progeny and leading to the evolution of much greater taxonomic diversity compared to “podotremes”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号