首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harmful algal blooms (HABs) of Karenia brevis are a recurrent problem in the Gulf of Mexico, with nearly annual occurrences on the Florida southwest coast, and fewer occurrences on the northwest Florida and Texas coasts. Beginning in 1999, the National Oceanic and Atmospheric Administration has issued the Gulf of Mexico HAB Bulletins to support state monitoring and management efforts. These bulletins involve analysis of satellite imagery with field and meteorological station data. The effort involves several components or models: (a) monitoring the movement of an algal bloom that has previously been identified as a HAB (type 1 forecast); (b) detecting new blooms as HAB or non-HAB (type 2); (c) predicting the movement of an identified HAB (type 3); (d) predicting conditions favorable for a HAB to occur where blooms have not yet been observed (type 4). The types 1 and 2 involve methods of bloom detection requiring routine remote sensing, especially satellite ocean color imagery and in situ data. Prediction (types 3 and 4) builds on the monitoring capability by using interpretative and numerical modeling. Successful forecasts cover more than 1000 km of coast and require routine input of remotely sensed and in situ data.The data sources used in this effort include ocean color imagery from the Sea-Viewing Wide Field-of-View Sensor/OrbView-2 satellite and processed using coastal-specific algorithms, wind data from coastal and offshore buoys, field observations of bloom location and intensity provided by state agencies, and forecasts from the National Weather Service. The HAB Bulletins began in coordination with the state of Florida in autumn of 1999 and included K. brevis bloom monitoring (type 1), with limited advisories on transport (type 3) and the detection of blooms in new areas (type 2). In autumn 2000, we improved both the transport forecasts and detection capabilities and began prediction of conditions favorable for bloom development (type 4). The HAB Bulletins have had several successes. The state of Florida was advised of the potential for a bloom to occur at the end of September 2000 (type 4), and the state was alerted to the position of blooms in January 2000 and October 2001 in areas that had not been previously sampled (type 3). These successful communications of HAB activity allowed Florida agencies responsible for shellfish management and public health to respond to a rapidly developing event in a timely, efficient manner.  相似文献   

2.
The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.  相似文献   

3.
In spring 2002 there was a significant outbreak of harmful microalgal bloom (HAB) in Hauraki Gulf on the north-eastern coast of New Zealand. With the exception of only a few sites where there was also a build-up of Noctiluca scintillans, the outbreak was largely associated with an almost monospecific bloom of Karenia concordia. At the peak of this bloom, mortalities of fish and abalone were observed. In areas where Noctiluca cells were found dead they had consumed large numbers of K. concordia cells. Laboratory tests showed cell extracts of K. concordia to be haemolytic and cytotoxic and confirmed that this species was responsible for marine life mortality. Satellite sea surface temperature (SST) data, obtained prior to the mid-October 2002 toxic outbreaks in Hauraki Gulf, showed signs of strong, along-shelf upwelling and also cross-shelf advection of warm, offshore, subtropical water into the Gulf through Jellicoe Channel. Time-series ocean colour data retrieved from the same region showed build-up of very high chlorophyll a level in Hauraki Gulf, virtually in same areas where bloom proportions of K. concordia (up to 3.3 × 107 cells l−1) were recorded. The relationships of this massive bloom to contemporaneous, remotely sensed SST and ocean colour satellite data (SeaWiFS) during the cold phase of ENSO are discussed.  相似文献   

4.
Spatial and temporal decorrelation scales in phytoplankton bloom magnitudes are reviewed with the goal of informing the design of efficient and informative observing networks for monitoring of potentially harmful algal blooms (HABs) along the U.S. West Coast. Our analysis of historic MODIS Fluorescent Line Height data shows that, unlike several previous studies, seasonal timing of phytoplankton blooms off the U.S. West Coast propagates from South to North. In situ data show that temporal decorrelation scales are shortest off Northern California (∼4 days) and longest in the Southern California Bight (∼17 days). In a cross-shore direction, we find that variability in the near-shore biomass is decoupled from biomass further offshore (∼2–4 km).Our review of the cloud cover gap statistics suggests that satellite data provide reasonably inexpensive information about bloom events, particularly at seasonal to inter-annual scales, but is insufficient to capture many event-scale blooms. Absent adequate satellite data, in situ monitoring becomes essential. Existing networks of automated monitoring sites from piers and moorings off the California coast is insufficient to describe regional variability in blooms, but is likely informative of bloom magnitudes in the immediate proximity of observation stations. We suggest that a more effective network will have a combination of shore-based stations and a few (5–10) offshore moorings. Shore-based stations should be located in proximity to sensitive HAB targets. This would provide monitoring of existing conditions and guide decision-making about beach closures and aquaculture management practices. Offshore stations can serve as proxy for regional conditions and can be used to issue early warnings of potential HAB conditions developing in a specific region.  相似文献   

5.
Karenia brevis is a harmful alga associated with deleterious effects on zooplankton, but the exact cause (e.g. toxin, nutritional inadequacy or starvation) of these adverse effects is not clear. RNA:DNA ratios, fecundity and fecal pellet production of Acartia tonsa were measured on mono-algal and mixed-algal culture diets of K. brevis and Peridinium foliaceum to examine the usefulness of RNA:DNA ratios as an indicator of nutrition and to determine if adverse effects of K. brevis are due to the presence of toxins, poor nutritional quality or starvation. RNA:DNA ratios and egg production values were significantly higher for 100% P. foliaceum diet compared to 100% K. brevis diet. Significant differences in egg production, but not RNA:DNA ratios, were found between the various mixed diets, suggesting egg production is a more sensitive indicator of nutritional quality than RNA:DNA ratios. Changes in RNA:DNA ratios, fecundity and fecal pellet production of copepods fed two different toxic K. brevis strains were nearly identical, indicating that the presence of brevetoxins has little affect on A. tonsa. The similarity in RNA:DNA ratios, egg production, percent hatching and fecal production between the 100% K. brevis diet and starved copepods suggests that A. tonsa does not consume K. brevis when offered as its sole food source.  相似文献   

6.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

7.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

8.
Due to slow rates of molecular evolution, DNA sequences used to identify and build phylogenies of algal species involved in harmful algal blooms (HABs) are generally invariant at the intraspecific level. This means that it is unknown whether HAB events result from the growth of a single clone, a few dominant clones, or multiple clones. This is true despite the fact that several physiological and demographic traits, as well as toxicity, are known to vary across clones. We generated AFLP fingerprints from a set of 6 clonal isolates, taken from a bloom of Prymnesium parvum at a striped bass mariculture facility. This new haptophyte bloom was recently implicated in fish kills at several sites in the United States. The AFLP fragments were highly reproducible and showed that all isolates were distinguishable due to abundant AFLPs unique to single isolates. These results demonstrate that blooms can be genetically diverse outbreaks and indicate that AFLP can be a powerful molecular tool for characterizing and monitoring this diversity.  相似文献   

9.
Mechanisms influencing initiation of harmful algal blooms (HABs) are diverse, and are not likely to be mutually exclusive. Rather, initiation of HABs is a result of interactions between processes, which result in biological, physical, and chemical conditions optimal for a bloom. Due to the complexity of some bloom initiation processes, bloom-preventative management may be possible. Results from a modeling exercise and a laboratory experiment indicated that a phytoplankton bloom could be circumvented through manipulation of the nutrient-loading mode, i.e., pulsed vs. continuous loading. These findings, should they prove consistent in more robust field experiments, may provide insights for the development of new management approaches for some HABs. Optimal bloom conditions, however, vary between HAB species. Consequently, it is unlikely that a single management solution will exist. Preventative management efforts will require early warning of HAB initiation, perhaps even before the appearance of an HAB species. An indicator based on the dynamic nature of phytoplankton succession events and phytoplankton species diversity may prove useful for this purpose. Applying this index to an existing plankton data set showed that Microcystis blooms might have been predicted months before the start of the bloom.  相似文献   

10.
The frequency and distribution of high biomass blooms produced by two dinoflagellate species were analysed along the French continental shelf from 1998 to 2012. Two species were specifically studied: Karenia mikimotoi and Lepidodinium chlorophorum. Based on remote-sensing reflectances at six channels (410, 430, 480, 530, 550 and 670 nm), satellite indices were created to discriminate the species forming the blooms. A comparison with observations showed that the identification was good for both species in spite of a lower specificity for L. chlorophorum. The overall analysis of the satellite indices, in association with some monitoring data and cruise observations, highlights the regularity of these events and their extent on the continental shelf. L. chlorophorum blooms may occur all along the South Coast of Brittany. All the coastal areas under the influence of river plumes and the stratified northern shelf area of the Western English Channel appear to be areas of bloom events for both species. These two species are likely to be in competitive exclusion as they share the same spatial distribution and the timing of their bloom is very close. Finally, due to the scarcity of off-shore observations, these satellite indices provide useful information regarding HABs management and the development of a warning system along the French coast.  相似文献   

11.
With the global expansion of harmful algal blooms (HABs), several measures, including molecular approaches, have been undertaken to monitor its occurrence. Many reports have indicated the significant roles of bacteria in controlling algal bloom dynamics. Attempts have been made to utilize the bacteria/harmful algae relationship in HAB monitoring. In this study, bacterial assemblages monitored during coastal HABs and bacterial communities in induced microcosm blooms were investigated. Samples were analysed using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene. DGGE bands with peculiar patterns before, during, and after algal blooms were isolated and identified. Probes for six ribotypes representing organisms associated with Chatonella spp., Heterocapsa circularisquama, or Heterosigma akashiwo were used for analysis on NanoChip electronic microarray. In addition, a new approach using cultured bacteria species was developed to detect longer (533 bp) polymerase chain reaction-amplified products on the electronic microarray. The use of fluorescently labelled primers allowed the detection of individual species in single or mixed DNA conditions. The developed approach enabled the detection of the presence or absence and relative abundance of the HAB-related ribotypes in coastal and microcosm blooms. This study indicates the ability of electronic microarray platform to detect or monitor bacteria in natural and induced environments.  相似文献   

12.
The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate‐origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate‐origin phytoplankton could well become resident bloom formers in the Arctic Ocean.  相似文献   

13.
潘刚  段舜山  徐宁 《生态科学》2007,26(5):460-465
海洋水色遥感已成为赤潮探测与监测的重要技术手段之一。文章回顾了赤潮卫星遥感技术的发展历程,阐述了水色遥感的原理--水体的离水辐射及其光谱特征。着重论述了高光谱卫星在赤潮水色遥感中的作用,通过大气校正减少大气和气溶胶对遥感信息的衰减,同时就赤潮发生的海洋学机理进行了探讨。综合分析后指出中分辨率成像光谱辐射计(MODIS)作为图谱合一的新一代卫星传感器将在赤潮的卫星监测研究中发挥及其重要的作用。并对今后赤潮遥感的主攻方向提出了一些建议:拓宽遥感数据来源,与地理信息系统技术结合及加强赤潮的预警研究等。  相似文献   

14.
Fish and invertebrate kills were reported from September to October 1996 in the Indian River, Florida, coincident with blooms of the dinoflagellate Gymnodinium pulchellum Larsen 1994. This is the first report of a bloom of this species in the Americas. Fish and invertebrate species affected were common snook ( Centropomus undecimalis ), striped mullet ( Mugil cephalus ), hardhead catfish ( Arius felis ), red drum ( Sciaenops ocellatus ), sheepshead ( Archosargus probatocephalus ), black drum ( Pogonias cromis ), blue crab ( Callinectes sapidus ), and shrimp ( Penaeus spp.). However, Gymnodinium pulchellum has previously caused fish kills in Japan and Australia. Examination of archived phytoplankton samples from a fish kill reported in the same area of the Indian River in August 1990 confirmed the presence of high concentrations of G. pulchellum. Fish kills associated with Alexandrium monilatum and potentially Pfiesteria -like species in the Indian River also are discussed. Scanning electron microscopy provided additional morphological detail on this distinct but little-known dinoflagellate.  相似文献   

15.
The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.  相似文献   

16.
赫冬梅  段舜山 《生态科学》2011,30(4):454-458
海洋生态系统是地球生物圈的重要组成部分。目前,人类活动已经严重破坏了海洋生态系统,导致了海洋生态系统的失衡。赤潮的发生正是这种不平衡的具体体现。文章讨论了人类活动对海洋生态系统的负面影响以及对近海海域赤潮发生的推波助澜作用;主要综述了影响赤潮发生和消亡的生态条件及环境影响因子。最后,强调了学科交叉研究在管理和防范赤潮的发生,维护近海海洋生态系统健康服务功能的必要性,并提出了一些相应的对策和措施。  相似文献   

17.
The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (~30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 μm chl a fraction (~40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 μm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 μm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.  相似文献   

18.
Ocean temperature extreme events such as marine heatwaves are expected to intensify in coming decades due to anthropogenic global warming. Reported ecological and economic impacts of marine heatwaves include coral bleaching, local extinction of mangrove and kelp forests and elevated mortalities of invertebrates, fishes, seabirds and marine mammals. In contrast, little is known about the impacts of marine heatwaves on microbes that regulate biogeochemical processes in the ocean. Here we analyse the daily output of a near‐global ocean physical–biogeochemical model simulation to characterize the impacts of marine heatwaves on phytoplankton blooms in 23 tropical and temperate oceanographic regions from 1992 to 2014. The results reveal regionally coherent anomalies of shallower surface mixing layers and lower surface nitrate concentrations during marine heatwaves. These anomalies exert counteracting effects on phytoplankton growth through light and nutrient limitation. Consequently, the responses of phytoplankton blooms are mixed, but can be related to the background nutrient conditions of the study regions. The blooms are weaker during marine heatwaves in nutrient‐poor waters, whereas in nutrient‐rich waters, the heatwave blooms are stronger. The corresponding analyses of sea‐surface temperature, chlorophyll a and nitrate based on satellite observations and in situ climatology support this relationship between phytoplankton bloom anomalies and background nitrate concentration. Given that nutrient‐poor waters are projected to expand globally in the 21st century, this study suggests increased occurrence of weaker blooms during marine heatwaves in coming decades, with implications for higher trophic levels and biogeochemical cycling of key elements.  相似文献   

19.
Harmful algal blooms (HABs) characterized by a large concentration of toxic species appear rather rarely, but have a severe impact on the whole ecosystem. To study on possible trigger mechanisms for the emergence of HABs, we consider a nutrient-phytoplankton-zooplankton model to find the conditions under which a toxic phytoplankton species is able to form a bloom by winning the competition against its nontoxic competitor. The basic mechanism is related to the excitability of the system, i.e., the ability to develop a large response on certain perturbations. In a large class of models, a HAB results from a combined effect of nutrient enrichment and selective predation on different phytoplankton populations by zooplankton. We show that the severity of HAB is controlled by nutrient enrichment and zooplankton abundance, while the frequency of its occurrence depends on the strength of selectivity of predation. Thereby the intricate interplay between excitability, competition, and selective grazing pressure builds the backbone of the mechanism of the emergence of HABs.  相似文献   

20.
Satellite pictures and in situ observations indicate strong phytoplankton blooms including harmful algae blooms (HABs) during southwest (SW) summer monsoon in the Vietnamese upwelling area. In this period, nutrients are provided by coastal upwelling and by the very high river runoff from the Mekong River. During SW monsoon, in general two circulation patterns exist which allow the prediction of advection and diffusion of HAB patches. A Lagrangian HAB model that is driven by a circulation model and applied to HABs in Vietnamese waters is presented. Advection which is the most complicated part in modelling transport of passive substances is validated with a Lagrangian sediment trap experiment. The model produces realistic results compared to in situ observations and satellite images and might be used for real time forecast in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号