首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The avian erythroblastosis virus v-erbA oncogene is imprecisely derived from a cellular gene (c-erbA) encoding a thyroid hormone receptor: the v-erbA protein has sustained both small terminal deletions and internal amino acid sequence changes relative to c-erbA. We report here that one of these missense differences between v- and c-erbA proteins, located in a zinc finger DNA binding domain, has dramatic effects on the biological activities of the encoded protein. Back mutation of the viral coding sequence to resemble c-erbA at this site severely impairs erythroid transformation and produces subtle changes in DNA binding by the encoded protein, suggesting that differences in DNA binding by the viral and cellular proteins may be involved in the activation of v-erbA as an oncogene.  相似文献   

4.
Ho DH  Baglia FA  Walsh PN 《Biochemistry》2000,39(2):316-323
To localize the platelet binding site on factor XI, rationally designed, conformationally constrained synthetic peptides were used to compete with [(125)I]factor XI binding to activated platelets. The major platelet binding energy resided within the sequence of amino acids T(249)-F(260). Homology scanning, using prekallikrein amino acid substitutions within the synthetic peptide T(249)-F(260), identified a major role for R(250) in platelet binding. Inhibition of [(125)I]factor XI binding to activated platelets by the recombinant Apple 3 domain of factor XI and inhibition by unlabeled factor XI were identical, whereas the recombinant Apple 3 domain of prekallikrein had little effect. A "gain-of-function" chimera in which the C-terminal amino acid sequence of the Apple 3 domain of prekallikrein was replaced with that of factor XI was as effective as the recombinant Apple 3 domain of factor XI and unlabeled factor XI in inhibiting [(125)I]factor XI binding to activated platelets. Alanine scanning mutagenic analysis of the recombinant Apple 3 domain of factor XI indicated that amino acids R(250), K(255), F(260), and Q(263) (but not K(252) or K(253)) are important for platelet binding. Thus, the binding energy mediating the interaction of factor XI with platelets is contained within the C-terminal amino acid sequence of the Apple 3 domain (T(249)-V(271)) and is mediated in part by amino acid residues R(250), K(255), F(260), and Q(263).  相似文献   

5.
6.
Mutants created by site-directed mutagenesis were used to elucidate the function of amino acids involved in ligand binding to ecdysteroid receptor (EcR) and heterodimer formation with ultraspiracle (USP). The results demonstrate the importance of the C-terminal part of the D-domain and helix 12 of EcR for hormone binding. Some amino acids are involved either in ligand binding to EcR (E476, M504, D572, I617, N626) or ligand-dependent heterodimerization as determined by gel mobility shift assays (A612, L615, T619), while others are involved in both functions (K497, E648). Some amino acids are suboptimal for ligand binding (L615, T619), but mediate ligand-dependent dimerization. We conclude that the enhanced regulatory potential by ligand-dependent modulation of dimerization in the wild type is achieved at the expense of optimal ligand binding. Mutation of amino acids (K497, E648) involved in the salt bridge between helix 4 and 12 impair ligand binding to EcR more severely than hormone binding to the heterodimer, indicating that to some extent heterodimerization compensates for the deleterious effect of certain mutations. Different effects of the same point mutations on ligand binding to EcR and EcR/USP (R511, A612, L615, I617, T619, N626) indicate that the ligand-binding pocket is modified by heterodimerization.  相似文献   

7.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

8.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

9.
10.
11.
We have compared the affinities for T3 and the T3 analog binding characteristics of the in vitro translational products of seven c-erbA cDNAs (chicken c-erbA alpha; human placental c-erbA beta; rat c-erbA beta-1; rat c-erbA alpha-1; rat c-erbA alpha-2; human testis c-erbA alpha-2; and human kidney c-erbA alpha-2). Four of these (chicken c-erbA alpha, human placental c-erbA beta, rat c-erbA beta-1, rat c-erbA alpha-1) bound T3 with high affinity as previously described. When compared under identical conditions of synthesis and [125I]T3 binding, there was no significant difference between the affinity of the chicken c-erb A alpha-1 and the human c-erbA beta but in a more limited series the affinity of rat c-erbA beta-1 for T3 was 4.6-fold higher than that of the rat c-erbA alpha-1. In vitro translational products of the beta-probes showed a characteristic 2.2-fold higher triiodothyroacetic acid/T3 ratio than did the products of the alpha-probes, regardless of the species of origin of the probe. As previously established, the rat c-erbA alpha-2 product did not bind T3. However, in contrast to two published reports, the human testis and kidney alpha-2 probe products also failed to bind T3. These findings indicate that highly conserved C-terminal 37-40 residues are important for high affinity T3 binding by proteins encoded by the c-erb A family of genes.  相似文献   

12.
13.
To determine the specific mechanism of ligand binding to angiotensin (Ang II) receptor AT1, mutagenized rat receptor cDNAs were expressed transiently in COS-7 cells and the effect of the mutations on the binding to peptidic and non-peptidic ligands was analyzed by Scatchard plots. Mutation of Lys199 to Gln in the intramembrane domain strongly reduced the affinity to both [125I] Ang II and [125I]-1Sar, 8Ile-Ang II whereas mutation of two other Lys had little effect, indicating involvement of Lys199 in binding ligands. Replacement of each of four Cys in the extracellular domain markedly reduced binding affinity, indicating the importance of two putative disulfide bridges in the formation of active receptor conformation. Substitution of Asp for Asn in N-glycosylation had no effect on ligand binding or expression of the receptor. These studies indicate mutated receptors are expressed in the plasma membrane and are amenable for further detailed studies.  相似文献   

14.
The effects of zinc and other divalent metals on the [125I]T3 binding to rat c-erbA alpha and beta recombinant proteins were assessed. The addition of ZnCl2 caused a reversible and dose-dependent inhibition of [125I]T3 binding to rc-erbA beta proteins with half maximum inhibition occurring at 50-100 microM, but no significant effect on [125I]T3 binding to rc-erbA alpha under the same assay conditions. Scatchard analysis revealed a decrease in [125I]T3 binding capacity to beta protein without marked change in Kd values in presence of zinc. Moreover, significant inhibitions of [125I]T3 binding to both alpha and beta proteins were observed in the presence of 100 microM of either MnCl2, CdCl2 or CuCl2, but not MgCl2. Thus, the selective effect of zinc compared to other divalent metals to inhibit T3 binding to rc-erbA beta, but not alpha, proteins was documented and suggest a possible regulatory role for zinc in modulating the intracellular action of thyroid hormone.  相似文献   

15.
16.
To identify ligand-binding domains of Angiotensin II (AngII) type 1 receptor (AT1), two different radiolabeled photoreactive AngII analogs were prepared by replacing either the first or the last amino acid of the octapeptide by p-benzoyl-L-phenylalanine (Bpa). High yield, specific labeling of the AT1 receptor was obtained with the 125I-[Sar1,Bpa8]AngII analog. Digestion of the covalent 125I-[Sar1,Bpa8]AngII-AT1 complex with V8 protease generated two major fragments of 15.8 kDa and 17.8 kDa, as determined by SDS-PAGE. Treatment of the [Sar1,Bpa8]AngII-AT1 complex with cyanogen bromide produced a major fragment of 7.5 kDa which, upon further digestion with endoproteinase Lys-C, generated a fragment of 3.6 kDa. Since the 7.5-kDa fragment was sensitive to hydrolysis by 2-nitro-5-thiocyanobenzoic acid, we circumscribed the labeling site of 125I-[Sar1,Bpa8]AngII within amino acids 285 and 295 of the AT1 receptor. When the AT1 receptor was photolabeled with 125I-[Bpa1]AngII, a poor incorporation yield was obtained. Cleavage of the labeled receptor with endoproteinase Lys-C produced a glycopeptide of 31 kDa, which upon deglycosylation showed an apparent molecular mass of 7.5 kDa, delimiting the labeling site of 125I-[Bpa1]AngII within amino acids 147 and 199 of the AT1 receptor. CNBr digestion of the hAT1 I165M mutant receptor narrowed down the labeling site to the fragment 166-199. Taken together, these results indicate that the seventh transmembrane domain of the AT1 receptor interacts strongly with the C-terminal amino acid of [Sar1, Bpa8]AngII interacts with the second extracellular loop of the AT1 receptor.  相似文献   

17.
Using a T7 expression system, large amounts of the human placental c-erbA protein (h-TR beta 1) were expressed. From 1 liter of Escherichia coli culture, approximately 50-100 micrograms of purified h-TR beta 1 were obtained. Analysis of the binding data indicated that the purified h-TR beta 1 binds to 3,3',5-triiodo-L-thyronine (T3) with a Ka = 2.8 x 10(9) M-1. It binds to 3,3',5-triiodo-L-thyropropionic acid, 3,3',5-triiodo-L-thyroacetic acid, D-T3, L-thyroxine (T4), and 3',5',3-triiodo-L-thyronine with 475, 120, 39, 7, and 0.1%, respectively, of the activity of L-T3. This order of binding activity to T3 analogs is similar to that reported for the T3 nuclear receptor identified in tissues or cultured cells. Furthermore, the purified h-TR beta 1 binds to the T3 response element of the rat growth hormone gene. Thus, the purified h-TR beta 1 is active. To identify the hormone binding domain, the purified h-TR beta 1 was affinity labeled with underivatized [3',5'-125I]T4. A partial digestion by trypsin yielded a 125I-labeled 25-kDa fragment which was identified to be the domain Phe240-Asp456 by amino acid sequencing. Thus, the purified h-TR beta 1 appears suitable for other structural and functional studies.  相似文献   

18.
19.
G Kadar  C David    A L Haenni 《Journal of virology》1996,70(11):8169-8174
The 206-kDa protein of turnip yellow mosaic virus belongs to an expanding group of proteins containing a domain which includes the consensus nucleotide binding site GxxxxGKS/T. A portion of this protein (amino acids [aa] 916 to 1259) was expressed in Escherichia coli and purified by affinity chromatography to near homogeneity. In the absence of any other viral factors, it exhibited ATPase and GTPase activities in vitro. A mutant protein with a single amino acid substitution in the consensus nucleotide binding site (Lys-982 to Ser) exhibited only low levels of both activities, implying that Lys-982 is important for nucleoside triphosphatase activity. The protein also possessed nonspecific RNA binding capacity. Deletion mutants revealed that an N-terminal domain (aa 916 to 1061) and a C-terminal domain (aa 1182 to 1259) participate in RNA binding. The results presented here provide the first experimental evidence that turnip yellow mosaic virus encodes nucleoside triphosphatase and RNA binding activities.  相似文献   

20.
In this study, we have further delineated the domains of the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine co-agonist binding site. Taking an iterative approach, we have constructed truncation mutants of the NR1 subunit, transiently expressed them in HEK-293 cells, and determined the binding of the glycine site antagonist [3H]L-689,560. Amino acids 380-811 were sufficient to form a glycine binding site with affinities for [3H]L-689,560 and glycine that were not significantly different from wild-type NR1. More extensive deletions, from either the amino- or the carboxy-terminal end, resulted in loss of ligand binding. Additional constructs were made starting from amino acids 380-843 of NR1, replacing the transmembrane (TMI-TMIII) domain with intervening linker sequences while retaining the TMIV domain so as to anchor the polypeptide to the membrane. Although robust amounts of polypeptides were synthesised by transfected cells, only low levels of [3H]L-689,560 binding sites could be detected. This suggests that only a small proportion of the synthesised polypeptide folds in the appropriate manner so as to form a ligand binding site. These data indicate that although it is possible to reduce the glycine binding site to minimal so-called S1 and S2 domains, efficient folding of the polypeptide so as to form a ligand binding site may require sequences within the TMI-TMIII domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号