首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

2.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

3.
The physiological consequences for NO3 utilization by the plant of underexpression and overexpression of nitrate reductase (NR) were investigated in nine transformants of Nicotiana tabacum and Nicotiana plumbaginifolia. The in vitro NR activities (NRAs) in both roots and leaves of low- and high-NR tobacco transformants ranged from 5–10% to 150–200%, respectively, of those measured in wild-type plants. The level of NR expression markedly affected the NO3 reduction efficiency in detached leaves and intact plants. In both species, 15NO3 reduction ranged from 15–45% of 15NO3 uptake in the low-NR plants, to 40–80% in the wild-type, and up to 95% in high-NR plants. In the high-NR genotypes, however, total 15NO3 assimilation was not significantly increased when compared with that in wild-type plants, because the higher 15NO3 reduction efficiency was offset by lower 15NO3 uptake by the roots. The inhibition of NO3 uptake appeared to be the result of negative feedback regulation of NO3 influx, and is interpreted as an adjustment of NO3 uptake to prevent excessive amino acid synthesis. In genotypes underexpressing NR, the low 15NO3 reduction efficiency also was generally associated with a decrease in net 15NO3 uptake as compared with the wild type. Thus, underexpression of NR resulted in an inhibition of reduced 15N synthesis in the plant, although the effect was much less pronounced than that expected from the very low NRAs. The restricted NO3 uptake in low-NR plants emphasizes the point that the products of NO3 assimilation are not the only factors responsible for down-regulation of the NO3 uptake system.  相似文献   

4.
The patterns of growth, assimilation of 14CO2 and distribution of 14C-labelled assimilate were followed for 12 wk from sowing in individual plants of Lolium perenne grown in miniswards at either low (500 plants m-2) or high (5000 plants m-2) density. At the latter density, plants were characterised by a 50% reduction in RGR, by the production of fewer tillers, especially second- and third-order tillers, and by a reduction in mean tiller weight. All the green and senescing leaves of each tiller assimilated 14CO2 and the overall assimilatory capacity of a tiller was directly related to its dry weight. At both densities the plant consisted of a main shoot and established tillers with comparable assimilatory activities and a range of developing tillers that assimilated relatively small amounts of 14CO2. As each successive primary tiller developed it was supplied with assimilate from the main shoot and the degree of support was inversely proportional to the dry weight of the tiller. At both densities it was concluded that the first primary tiller could be regarded as an independent assimilatory unit when it reached a dry weight of about 25 mg even though some import of main shoot assimilate continued until the tiller was double this weight. The supply of assimilate to the root system was greatly reduced at both densities compared with previous observations on plants grown singly.  相似文献   

5.
6.
7.
The objective of this study was to investigate the behaviour of different legumes against salinity and water stress, thus trying to discover simultaneous adaptations to both stresses. The nitrogen fixation, transpiration, predawn leaf water potential, and stomatal response of Medicago sativa L. (cvs. Tierra de Campos and Aragon), Trifolium repens L. (cv. Aberystwyth S-184) and T. brachycalycinum Katzn. et Morley (= T. subterraneum L. cv. Clare) were compared at three levels of stress (0.05, 0.3 and 0.5 MPa of either NaCl or polyethylene glycol 6000) in nutrient solution. The plants were stressed for three days and then returned to control nutrient solution. The changes in the parameters analyzed were dependent on the proportion of stress treatments and the nature of the species, always being greater in plants from PEG than from NaCl solutions. Transfer of lucerne and subclover plants from NaCl at 0.05 MPa to a non-saline medium resulted in an increase of nitrogen fixation above the level of the non-salinized control plants, especially significant in lucerne. Analysis of possible inorganic impurities in commercial PEG suggest that such type of impurities are not responsible for the toxic effects reported. Plant damage resulting from PEG treatment was apparently due to penetrations of PEG (as determined qualitatively by using the tetraiodinebismuthic acid technique) or low-molecular organic impurities into the plant. – The results are discussed as part of the adaptation of the different species to salinity and water stress. The best performance was given by "Tierra de Campos".  相似文献   

8.
Bone marrow plasma cells from fifteen cases of multiple myeloma, immunologically typed, were incubated with different tritiated compounds. The labelling index with tritiated thymidine is generally low, while the mean grain count is fairly normal in the active cells. The labelling index of 3H-uridine and 3H-leucine was very high, while the mean grain count per cell lies within the normal range. The results obtained with 3H-phenylalanine-mustard (melphalan), which is a drug used in the treatment of the plasmacytoma, show also incorporation values roughly comparable to those of 3H-leucine. The present data seem to support the clinical use of melphalan as a compound that is actively incorporated into the plasma cells of plasmacytoma although inhibition of protein synthesis due to specific binding to protein was not demonstrated.  相似文献   

9.
Abstract. Positron emission tomography (PET) has been utilized to obtain dynamic images of long distance nutrient translocation in plants. Positron emitting 18F, produced by a Van de Graaff accelerator using the reaction 18O(p,n)18F, was fed in solution to excised stems of Glycine max positioned vertically in a large-aperture PET detector system. Images of tracer activity were recorded with a time resolution of 0.5 min and a spatial resolution of 4 mm. Maximum tracer activities at stem sites were obtained within 3 min of the pulse feed. A model is presented enabling evaluation of regional values for tracer flow, tracer binding, flow speed and flow volume. Analysis of data for one stem position yielded a flow volume of 2.1mm3 min−1 and a flow speed of 36cm min−1. Comparison with the distribution of 14C-inulin, which was simultaneously fed to the cut stems, indicates the 18F is suitable for use as an apoplastic tracer; 92% of the tracer activity accumulated in the leaves. The fraction of 18F that remained bound was most concentrated at stem nodal regions, an observation consistent with the existence of transfer cells at these sites. Advantages and limitations of PET applied to plant physiological investigations are discussed.  相似文献   

10.
The light-stimulated absorption of 86Rb+ by Phaseolus vulgaris L. leaf slices was found to be sensitive to dichlorophenyldimethylurea in air as well as in nitrogen, whereas light-stimulated 22Na+ absorption in nitrogen was not sensitive to this inhibitor. The absorption of 22Na+ is not affected by light in air. The absorption of 42K+ is enhanced by a dichlorophenyldimethylurea-insensitive light effect under anaerobic conditions and further increased by light in the absence of the inhibitor. Light-enhanced 42K+ absorption in air was also inhibited by dichlorophenyldimethylurea. Previous work showed that light-stimulated 86Rb+ and 42K+ absorption by Phaseolus vulgaris leaf slices is restricted to the guard cells. The present results are discussed with reference to the effect of light on stomatal opening.  相似文献   

11.
Abstract. Net NO3 uptake by NO3 deficient Chara cells was used to calculate [NO3]c assuming that the cytoplasm occupies 10% total volume and that nitrate reduction and storage are negligible (i.e. maximum [NO3]c was calculated). A linear relationship was found between NO3 efflux and [NO3]c. There was an initial burst of NO3 efflux when NH+4 was added, followed by a slower efflux rate which matched influx rate such that net NO3 uptake was zero. Over 50% of NO3 that had been taken up in 2 h was lost within the first 5 min of NH+4 addition. The Nernst equation was used to predict the direction of the electrochemical driving force for NO3 entry. Under the experimental conditions used NO3 efflux is actively transported. The differential involvement of both NO3 influx and NO3 efflux in the regulation of NO3 uptake is discussed and a model is proposed to account for these results which envisages discrete NO3 influx and NO3 efflux carriers.  相似文献   

12.
13.
We investigated the effects of nitrogen (N) availability during the vegetative phase on (a) post‐anthesis N uptake and (b) its translocation into ears in barley plants grown in a greenhouse at two levels of N: low (50 mg N kg?1 sand) and optimal N supply (150 mg N kg?1 sand). Plants in the two N treatments were fertilised with the same amount of labelled 15N [50 mg 15N kg?1 sand at 10% 15Nexc (Nexcess, i.e. Nexc, is defined as the abundance of enriched stable isotope minus the natural abundance of the isotope) applied as 15NH415NO3] 10 days after anthesis (daa). In a separate experiment, the uptake and transport into ears of proteinogenic and non‐proteinogenic amino acids were studied to determine whether a relationship exists between amino acid transport into ears and their proteinogenic nature. Plants were fed with either 15N‐α‐alanine, a proteinogenic amino acid, or 15N‐α‐aminoisobutyric acid, a non‐proteinogenic amino acid. Both these amino acids were labelled at 95.6% 15Nexc. Results showed that N accumulations in stems, leaves and especially in ears were correlated with their dry matter (dm) weights. The application of 150 mg N kg?1 sand significantly increased plant dm weight and total N accumulation in plants. During their filling period, ears absorbed N from both external (growth substrate) and internal (stored N in plants) sources. Nitrogen concentration in ears was higher in optimal N‐fed plants than in low N‐fed plants until 10 daa, but from 21 to 35 daa, differences were not detected. Conversely, 15Nexc in ears, leaves and stems was higher in low N‐fed plants than in optimal N‐fed plants. Ears acted as strong sink organ for the post‐anthesis N taken up from the soil independently of pre‐anthesis N nutrition: on average, 87% of the N taken up from the soil after anthesis was translocated and accumulated in ears. Low N‐fed plants continued to take up N from the post‐anthesis N fertiliser during the later grain‐filling period. The increase of pre‐anthesis N supply rate led to a decrease in the contribution of nitrogen derived from post‐anthesis 15N‐labelled fertiliser (Ndff) to total N in all aboveground organs, especially in ears where 44% and 22% of total N originated from post‐anthesis N uptake in low N‐fed and optimal N‐fed plants, respectively. The experiment with labelled amino acids showed that there was greater transport of proteinogenic amino acid into the ear (50% of total 15N) than non‐proteinogenic amino acid (39%). However, this transport of the non‐proteinogenic amino acids into ear suggested that the transport of N compounds from source (leaves) to sink organs (ear) might not be intrinsically regulated by their ability to be incorporated into storage protein of ears.  相似文献   

14.
The mean annual rainfall in southern Africa is found to explain over half of the observed variance in the stable nitrogen (N) isotopic signatures of C3 vegetation in southern Africa (r2=0.54, P<0.01). The inverse relationship between the stable N isotopic signatures of foliar samples from C3 vegetation and long‐term southern African rainfall is found on a scale larger than previously observed. A modest relationship is found between stable carbon (C) isotopic signatures of C3 vegetation and rainfall across the region (r2=0.20, P<0.01). No such relationship is found between stable C and N isotopic signatures of C4 vegetation and rainfall. The explanation of the relationship between 15N in C3 vegetation and the mean annual rainfall presented here is that nutrient availability varies inversely with water availability. This suggests that water‐limited systems in southern Africa are more open in terms of nutrient cycling and therefore the resulting natural abundance of foliar 15N in these systems is enriched. The use of this relationship may be of value to those researchers modeling both the dynamics of vegetation and biogeochemistry across this region. The use of the isotopic enrichment in C3 vegetation as a function of rainfall may provide an insight into nutrient cycling across the semi‐arid and arid regions of southern Africa. This finding has implications for the study of global change, especially as it relates to vegetation responses to changing regional rainfall regimes over time.  相似文献   

15.
To develop further the methods for estimation of NOx absorption by plants supplied with 15N-labelled fertilizer, we proposed a new calculation method, total N fixed method (TNF), and compared with the 15N dilution method and the classical mass balance method (MB).
Hydroponically grown soybean plants were supplied with 15N-labelled nitrate and exposed to 200–250 nl l−1 NO2 for 7 d. The proportions of the N derived from NO2 to total N in exposed plants were estimated by the three methods.
The reported rates of NO2 absorption by several plant species, estimated by the 15N dilution method, were recalculated using the TNF method. The results of the two methods were compared and showed that: (1) The 15N dilution method overestimated the content of NO2-N in exposed plants compared with the MB method whilst the TNF method produced estimations of NO2-N closer to those by the MB method when the plants were supplied with 5 m M nitrate. (2) The differences in estimations between the MB method and either the 15N dilution method or the TNF method increased with decreasing supply of 15N-labelled nitrate to roots.  相似文献   

16.
Cortical thymocytes of young adult mice were labeled in situ with radioactive DNA precursors. As a result of cell emigration and cell death, total thymic radioactivity decreased within 8 days to 10% or less of that present on day 1. Accumulation of thymic migrants in peripheral lymphoid organs was estimated by computing the net thymus-derived radioactivity in these tissues. Thymic cell death was assessed by comparing values obtained with 125I-UdR to those acquired with 3H-TdR. The results indicate that cortical thymocytes migrate to the spleen, mesenteric lymph node, femurs and intestine; nevertheless, only a small fraction of the activity originally present in the thymus was recovered in these organs; the vast majority of newly formed cortical thymocytes apparently die after a relatively short life span. Exclusive of the fraction which dies in situ, evidence for thymocyte death is seen in bone marrow; however, most migrants appear to terminate in the intestine.  相似文献   

17.
18.
19.
Whole bean plants, ev. Cockfield, grown in pots crowded or well-spaced (50 or 10 plants m2, respectively) were treated with 14CO2 at the pod-fill stage (25 modes) and the radioactivity in each leaf was determined after 30 min. With spaced plants the uptake was greatest in the mid-stem leaves and was proportional to leaf area. In contrast, 70% of the total assimilation took place in the upper six leaves of crowded plants and there was a steady decrease down the stem.
When 14CO2 was fed to single leaves of similar crowded plants the resultant distribution of labelled assimilates varied with the position of the treated leaf. After 6 h, 67% of the 14C fixed by a mid-stem leaf (node 13) was recovered from the beans, whereas 76% of that from an upper leaf (node 23) had accumulated along the stem. Due to the shading of mid-stem leaves at the higher planting densities, seed yield becomes increasingly dependent upon re-distribution of assimilates from stem to beans.  相似文献   

20.
Passive fluxes of K+ (86Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4M 2,4-dinitrophenol (DNP). K+ (86Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号