首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu F  Su Y  Li B  Zhou Y  Ryder J  Gonzalez-DeWhitt P  May PC  Ni B 《FEBS letters》2003,547(1-3):193-196
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation.  相似文献   

2.
Abstract: Proteolytic cleavage of β-amyloid precursor protein (βAPP) by α-secretase results in release of one secreted form (sAPP) of APP (sAPPα), whereas cleavage by β-secretase releases a C-terminally truncated sAPP (sAPPβ) plus amyloid β-peptide (Aβ). βAPP mutations linked to some inherited forms of Alzheimer's disease may alter its processing such that levels of sAPPα are reduced and levels of sAPPβ increased. sAPPαs may play important roles in neuronal plasticity and survival, whereas Aβ can be neurotoxic. sAPPα was ∼100-fold more potent than sAPPβ in protecting hippocampal neurons against excitotoxicity, Aβ toxicity, and glucose deprivation. Whole-cell patch clamp and calcium imaging analyses showed that sAPPβ was less effective than sAPPα in suppressing synaptic activity, activating K+ channels, and attenuating calcium responses to glutamate. Using various truncated sAPPα and sAPPβ APP695 products generated by eukaryotic and prokaryotic expression systems, and synthetic sAPP peptides, the activity of sAPPα was localized to amino acids 591–612 at the C-terminus. Heparinases greatly reduced the actions of sAPPαs, indicating a role for a heparin-binding domain at the C-terminus of sAPPα in receptor activation. These findings indicate that alternative processing of βAPP has profound effects on the bioactivity of the resultant sAPP products and suggest that reduced levels of sAPPα could contribute to neuronal degeneration in Alzhiemer's disease.  相似文献   

3.
Amyloid precursor protein (APP) family members and their proteolytic products are implicated in normal nervous system function and Alzheimer's disease pathogenesis. APP processing and Aβ secretion are regulated by neuronal activity. Various data suggest that NMDA receptor (NMDAR) activity plays a role in both non-amyloidogenic and amyloidogenic APP processing depending on whether synaptic or extrasynaptic NMDARs are activated, respectively. The APP-interacting FE65 proteins modulate APP trafficking and processing in cell lines, but little is known about their contribution to APP trafficking and processing in neurons, either in vivo or in vitro. In this study, we examined the contribution of the FE65 protein family to APP trafficking and processing in WT and FE65/FE65L1 double knockout neurons under basal conditions and following NMDAR activation. We report that FE65 proteins facilitate neuronal Aβ secretion without affecting APP fast axonal transport to pre-synaptic terminals. In addition, FE65 proteins facilitate an NMDAR-dependent non-amyloidogenic APP processing pathway. Generation of high-molecular weight (HMW) species bearing an APP C-terminal epitope was also observed following NMDAR activation. These HMW species require proteasomal and calpain activities for their accumulation. Recovery of APP polypeptide fragments from electroeluted HMW species having molecular weights consistent with calpain I cleavage of APP suggests that HMW species are complexes formed from APP metabolic products. Our results indicate that the FE65 proteins contribute to physiological APP processing and accumulation of APP metabolic products resulting from NMDAR activation.  相似文献   

4.
The amyloid beta-protein precursor (APP) of Alzheimer's disease (AD) is cleaved either by alpha-secretase to generate an N-terminally secreted fragment, or by beta- and gamma-secretases to generate the beta-amyloid protein (Abeta). The accumulation of Abeta in the brain is an important step in the pathogenesis of AD. Alternative mRNA splicing can generate isoforms of APP which contain a Kunitz protease inhibitor (KPI) domain. However, little is known about the physiological function of this domain. In the present study, the metabolic turnover of APP was examined in cultured chick sympathetic neurons. APP was labelled by incubating neurons for 5 h with [35S]methionine and [35S]cysteine. Intracellular labelled APP decayed in a biphasic pattern suggesting that trafficking occurs through two metabolic compartments. The half-lives for APP in each compartment were 1.5 and 5.7 h, respectively. A small fraction (10%) of the total APP was secreted into the culture medium where it was degraded with a half-life of 9 h. Studies using specific protease inhibitors demonstrated that this extracellular breakdown was due to cleavage by a trypsin-like serine protease that was secreted into the culture medium. Significantly, this protease was inhibited by a recombinant isoform of APP (sAPP751), which contains a region homologous to the Kunitz protease inhibitor (KPI) domain. These results suggest that KPI forms of APP regulate extracellular cleavage of secreted APP by inhibiting the activity of a secreted APP-degrading protease.  相似文献   

5.
The Alzheimer amyloid precursor protein (APP) is a transmembrane protein whose abnormal processing is associated with the pathogenesis of Alzheimer's disease. Activated caspases cleave APP and generate its carboxyl-terminally truncated fragment (APPdeltaC31). We have previously reported that overexpression of wild-type APP induces caspase-3 activation and apoptosis in postmitotic neurons. We now report that APPdeltaC31 potentially plays pathophysiological roles in neuronal death. Adenovirus-mediated overexpression of wild-type APP695 induced activation of caspase-3 and accumulation of APPdeltaC31 in postmitotic neurons derived from human NT2 embryonal carcinoma cells, whereas an APP mutant lacking the Abeta(1-20) region induced neither caspase-3 activation nor APPdeltaC31 generation. Inhibition of caspase-3 suppressed the generation of APPdeltaC31 in APP-overexpressing neurons. Forced expression of APPdeltaC31 induced apoptotic changes of neurons and non-neuronal cells, but failed to activate caspase-3. The cytotoxicity of APPdeltaC31 was also dependent on the Abeta(1-20) region. These results suggest that accumulation of wild-type APP activates neuronal caspase-3 to generate APPdeltaC31 that mediates caspase-3-independent cell death.  相似文献   

6.
Kienlen-Campard P  Octave JN 《Peptides》2002,23(7):1199-1204
The production of amyloid peptide (Abeta) from its precursor (APP) plays a key role in Alzheimer's disease (AD). However, the link between Abeta production and neuronal death remains elusive. We studied the biological effects associated with human APP expression and metabolism in rat cortical neurons. Human APP expressed in neurons is processed to produce Abeta and soluble APP. Moreover, human APP expression triggers neuronal death. Pepstatin A, an inhibitor of aspartyl proteases that reduces Abeta production, protects neurons from APP-induced neurotoxicity. This suggests that Abeta production is likely to be the critical event in the neurodegenerative process of AD.  相似文献   

7.
8.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

9.
Bailey JA  Ray B  Greig NH  Lahiri DK 《PloS one》2011,6(7):e21954
Overproduction of amyloid-β (Aβ) protein in the brain has been hypothesized as the primary toxic insult that, via numerous mechanisms, produces cognitive deficits in Alzheimer's disease (AD). Cholinesterase inhibition is a primary strategy for treatment of AD, and specific compounds of this class have previously been demonstrated to influence Aβ precursor protein (APP) processing and Aβ production. However, little information is available on the effects of rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, on APP processing. As this drug is currently used to treat AD, characterization of its various activities is important to optimize its clinical utility. We have previously shown that rivastigmine can preserve or enhance neuronal and synaptic terminal markers in degenerating primary embryonic cerebrocortical cultures. Given previous reports on the effects of APP and Aβ on synapses, regulation of APP processing represents a plausible mechanism for the synaptic effects of rivastigmine. To test this hypothesis, we treated degenerating primary cultures with rivastigmine and measured secreted APP (sAPP) and Aβ. Rivastigmine treatment increased metabolic activity in these cultured cells, and elevated APP secretion. Analysis of the two major forms of APP secreted by these cultures, attributed to neurons or glia based on molecular weight showed that rivastigmine treatment significantly increased neuronal relative to glial secreted APP. Furthermore, rivastigmine treatment increased α-secretase cleaved sAPPα and decreased Aβ secretion, suggesting a therapeutic mechanism wherein rivastigmine alters the relative activities of the secretase pathways. Assessment of sAPP levels in rodent CSF following once daily rivastigmine administration for 21 days confirmed that elevated levels of APP in cell culture translated in vivo. Taken together, rivastigmine treatment enhances neuronal sAPP and shifts APP processing toward the α-secretase pathway in degenerating neuronal cultures, which mirrors the trend of synaptic proteins, and metabolic activity.  相似文献   

10.
The fluidity of neuronal membranes plays a pivotal role in brain aging and neurodegeneration. In this study, we investigated the role of the omega-3 fatty acid docosahexaenoic acid (DHA) in modulation of membrane fluidity, APP processing, and protection from cytotoxic stress. To this end, we applied unilamellar transfer liposomes, which provided protection from oxidation and effective incorporation of DHA into cell membranes. Liposomes transferring docosanoic acid (DA), the completely saturated form of DHA, to the cell cultures served as controls. In HEK-APP cells, DHA significantly increased membrane fluidity and non-amyloidogenic processing of APP, leading to enhanced secretion of sAPPα. This enhanced secretion of sAPPα was associated with substantial protection against apoptosis induced by ER Ca(2+) store depletion. sAPPα-containing supernatants obtained from HEK-APP cells exerted similar protective effects as DHA in neuronal PC12 cells and HEK293 control cells. Correlating to further increased sAPPα levels, supernatants obtained from DHA-treated HEK-APP cells enhanced protection, whereas supernatants obtained from DHA-treated HEK293 control cells did not inhibit apoptosis, likely due to the low expression of endogenous APP and negligible sAPPα secretion in these cells. Further experiments with the small molecule inhibitors LY294002 and SP600125 indicated that sAPPα-induced cytoprotection relied on activation of the anti-apoptotic PI3K/Akt pathway and inhibition of the stress-triggered JNK signaling pathway in PC12 cells. Our data suggest that liposomal DHA is able to restore or maintain physiological membrane properties, which are required for neuroprotective sAPPα secretion and autocrine modulation of neuronal survival.  相似文献   

11.
Most Alzheimer disease (AD) patients show deposition of amyloid β (Aβ) peptide in blood vessels as well as the brain parenchyma. We previously found that vascular endothelial cells express amyloid β precursor protein (APP) 770, a different APP isoform from neuronal APP695, and produce Aβ. Since the soluble APP cleavage product, sAPP, is considered to be a possible marker for AD diagnosis, sAPP has been widely measured as a mixture of these variants. We hypothesized that measurement of the endothelial APP770 cleavage product in patients separately from that of neuronal APP695 would enable discrimination between endothelial and neurological dysfunctions. Using our newly developed ELISA system for sAPP770, we observed that inflammatory cytokines significantly enhanced sAPP770 secretion by endothelial cells. Furthermore, we unexpectedly found that sAPP770 was rapidly released from activated platelets. We also found that cerebrospinal fluid mainly contained sAPP695, while serum mostly contained sAPP770. Finally, to test our hypothesis that sAPP770 could be an indicator for endothelial dysfunction, we applied our APP770 ELISA to patients with acute coronary syndrome (ACS), in which endothelial injury and platelet activation lead to fibrous plaque disruption and thrombus formation. Development of a biomarker is essential to facilitate ACS diagnosis in clinical practice. The results revealed that ACS patients had significantly higher plasma sAPP770 levels. Furthermore, in myocardial infarction model rats, an increase in plasma sAPP preceded the release of cardiac enzymes, currently used markers for acute myocardial infarction. These findings raise the possibility that sAPP770 can be a useful biomarker for ACS.  相似文献   

12.
APP processing and synaptic function   总被引:39,自引:0,他引:39  
A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.  相似文献   

13.
Insoluble pools of the amyloid-beta peptide (Abeta) in brains of Alzheimer's disease patients exhibit considerable N- and C-terminal heterogeneity. Mounting evidence suggests that both C-terminal extensions and N-terminal truncations help precipitate amyloid plaque formation. Although mechanisms underlying the increased generation of C-terminally extended peptides have been extensively studied, relatively little is known about the cellular mechanisms underlying production of N-terminally truncated Abeta. Thus, we used human NT2N neurons to investigate the production of Abeta11-40/42 from amyloid-beta precursor protein (APP) by beta-site APP-cleaving enzyme (BACE). When comparing undifferentiated human embryonal carcinoma NT2- cells and differentiated NT2N neurons, the secretion of sAPP and Abeta correlated with BACE expression. To study the effects of BACE expression on endogenous APP metabolism in human cells, we overexpressed BACE in undifferentiated NT2- cells and NT2N neurons. Whereas NT2N neurons produced both full-length and truncated Abeta as a result of normal processing of endogenous APP, BACE overexpression increased the secretion of Abeta1-40/42 and Abeta11-40/42 in both NT2- cells and NT2N neurons. Furthermore, BACE overexpression resulted in increased intracellular Abeta1-40/42 and Abeta11-40/42. Therefore, we conclude that Abeta11-40/42 is generated prior to deposition in senile plaques and that N-terminally truncated Abeta peptides may contribute to the downstream effects of amyloid accumulation in Alzheimer's disease.  相似文献   

14.
Microglial activation as part of a chronic inflammatory response is a prominent component of Alzheimer's disease. Secreted forms of the beta-amyloid precursor protein (sAPP) previously were found to activate microglia, elevating their neurotoxic potential. To explore neurotoxic mechanisms, we analyzed microglia-conditioned medium for agents that could activate glutamate receptors. Conditioned medium from primary rat microglia activated by sAPP caused a calcium elevation in hippocampal neurons, whereas medium from untreated microglia did not. This response was sensitive to the NMDA receptor antagonist, aminophosphonovaleric acid. Analysis of microglia-conditioned by HPLC revealed dramatically higher concentrations of glutamate in cultures exposed to sAPP. Indeed, the glutamate levels in sAPP-treated cultures were substantially higher than those in cultures treated with amyloid beta-peptide. This sAPP-evoked glutamate release was completely blocked by inhibition of the cystine-glutamate antiporter by alpha-aminoadipate or use of cystine-free medium. Furthermore, a sublethal concentration of sAPP compromised synaptic density in microglia-neuron cocultures, as evidenced by neuronal connectivity assay. Finally, the neurotoxicity evoked by sAPP in microglia-neuron cocultures was attenuated by inhibitors of either the neuronal nitric oxide synthase (N(G)-propyl-L-arginine) or inducible nitric oxide synthase (1400 W). Together, these data indicate a scenario by which microglia activated by sAPP release excitotoxic levels of glutamate, probably as a consequence of autoprotective antioxidant glutathione production within the microglia, ultimately causing synaptic degeneration and neuronal death.  相似文献   

15.
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα(695) (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα(695) binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα(695) inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (K(d)≤8·10(-9) M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.  相似文献   

16.
In physiological conditions, both β-amyloid precursor protein (βAPP) and cellular prion (PrP(c)) undergo similar disintegrin-mediated α-secretase cleavage yielding N-terminal secreted products referred to as soluble amyloid precursor protein-α (sAPPα) and N1, respectively. We recently demonstrated that N1 displays neuroprotective properties by reducing p53-dependent cell death both in vitro and in vivo. In this study, we examined the potential of N1 as a neuroprotector against amyloid β (Aβ)-mediated toxicity. We first show that both recombinant sAPPα and N1, but not its inactive parent fragment N2, reduce staurosporine-stimulated caspase-3 activation and TUNEL-positive cell death by lowering p53 promoter transactivation and activity in human cells. We demonstrate that N1 also lowers toxicity, cell death, and p53 pathway exacerbation triggered by Swedish mutated βAPP overexpression in human cells. We designed a CHO cell line overexpressing the London mutated βAPP (APP(LDN)) that yields Aβ oligomers. N1 protected primary cultured neurons against toxicity and cell death triggered by oligomer-enriched APP(LDN)-derived conditioned medium. Finally, we establish that N1 also protects neurons against oligomers extracted from Alzheimer disease-affected brain tissues. Overall, our data indicate that a cellular prion catabolite could interfere with Aβ-associated toxicity and that its production could be seen as a cellular protective mechanism aimed at compensating for an sAPPα deficit taking place at the early asymptomatic phase of Alzheimer disease.  相似文献   

17.
Amyloid precursor protein (APP) and its secreted form, sAPP, contribute to the development of neurons in hippocampus, a brain region critical for learning and memory. Full‐length APP binds the low‐density lipoprotein receptor‐related protein (LRP), which stimulates APP endocytosis. LRP also contributes to neurite growth. Furthermore, the receptor associated protein (RAP) binds LRP in a manner that blocks APP–LRP interactions. To elucidate APP contributions to neurite growth for full‐length APP and sAPP, we cultured wild type (WT) and APP knockout (KO) neurons in sAPPα and/or RAP and measured neurite outgrowth at 1 day in vitro. Our data reveal that WT neurons had less axonal outgrowth including less axon branching. RAP treatment potentiated the inhibitory effects of APP. KO neurons had significantly more outgrowth and branching, especially in response to RAP, effects which were also associated with ERK2 activation. Our results affirm a major inhibitory role by full‐length APP on all aspects of axonal and dendritic outgrowth, and show that RAP–LRP binding stimulated axon growth independently of APP. These findings support a major role for APP as an inhibitor of neurite growth and reveal novel signaling functions for LRP that may be disrupted by Alzheimer's pathology or therapies aimed at APP processing.  相似文献   

18.
Increasing evidence suggests that the low density lipoprotein receptor-related protein (LRP) affects the processing of amyloid precursor protein (APP) and amyloid beta (Abeta) protein production as well as mediates the clearance of Abeta from the brain. Recent studies indicate that the cytoplasmic domain of LRP is critical for this modulation of APP processing requiring perhaps a complex between APP, the adaptor protein FE65, and LRP. In this study, we expressed a small LRP domain consisting of the C-terminal 97 amino acids of the cytoplasmic domain, or LRP-soluble tail (LRP-ST), in CHO cells to test the hypothesis that the APP.LRP complex can be disrupted. We anticipated that LRP-ST would inhibit the normal interaction between LRP and APP and therefore perturb APP processing to resemble a LRP-deficient state. Surprisingly, CHO cells expressing LRP-ST demonstrated an increase in both sAPP secretion and Abeta production compared with control CHO cells in a manner reminiscent of the cellular effects of the APP "Swedish mutation." The increase in sAPP secretion consisted mainly of sAPPbeta, consistent with the increase in Abeta release. Further, this effect is LRP-independent, as the same alterations remained when LRP-ST was expressed in LRP-deficient cells but not when the construct was membrane-anchored. Finally, deletion experiments suggested that the last 50 amino acid residues of LRP-ST contain the important domain for altering APP processing and Abeta production. These observations indicate that there are cellular pathways that may suppress Abeta generation but that can be altered to facilitate Abeta production.  相似文献   

19.
Upon activation, platelets secrete a 120-kDa protein that competes for the binding and internalization of acetyl low density lipoproteins (AcLDL) by macrophages. From the amino-terminal amino acid sequence, amino acid composition, and immunoblot analysis, we identified the active factor in platelet secretion products as sAPP, an alpha-secretase cleavage product of the beta-amyloid precursor protein (APP), that contains a Kunitz-type protease inhibitor (KPI) domain. We showed that both sAPP751 (also called Nexin II) and sAPP695, which does not contain a KPI domain, are ligands for the class A scavenger receptor (SR-A). Chinese hamster ovary cells stably transfected to express the SR-A bound and internalized 4-fold more human platelet-derived sAPP than control cells. The binding and internalization of sAPP were inhibited by the SR-A antagonist fucoidin. In addition, sAPP competed as effectively as fucoidin for SR-A-mediated cell association and degradation of (125)I-AcLDL. To determine if the KPI domain is required for the binding of sAPP to the SR-A, APP751 and APP695 were expressed in Chinese hamster ovary cells, and sAPP751 and sAPP695 purified from the medium were tested for their binding to the SR-A. sAPP751 and sAPP695 were equally effective in competing for the cell association of (125)I-AcLDL by SR-A-expressing cells, demonstrating that the KPI domain is not essential for binding. We also found that sAPP751 is present in extracts of atherosclerotic lesions and that sAPP competes for the SR-A-mediated cell association of oxidized low density lipoprotein. Deletion mutagenesis indicated that a negatively charged region of APP (residues 191-264) contributes to binding to the SR-A. These results suggest that the SR-A contributes to the clearance of sAPP and that sAPP competes for the cell association of other SR-A ligands.  相似文献   

20.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号