首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

2.
In immune cells, proinflammatory cytokine gene expression is regulated by glucocorticoids, whereas migration-inhibitory factor (MIF), a pleiotropic cytokine, has the unique property of counteracting the inhibitory effect of glucocorticoids on TNF-alpha and IL-1beta secretion. A few lines of evidence suggest that gammadelta T cells play an important role in immunoregulation. However, it is unknown whether human gammadelta T cells participate in regulating MIF secretion, and how gammadelta T cells, glucocorticoids, and cytokines converge to give a unified physiological response. In this study, we demonstrate that human Vgamma2Vdelta2 T cells augment MIF secretion. Remarkably, these Vgamma2Vdelta2 T cells, functioning similarly to MIF in part, counteracted inhibition of dexamethasone on production of IL-1beta and TNF-alpha. SCID mice reconstituted with human PBMC that were mock depleted of Vdelta2 T cells and repeatedly infected with lethal dose of Escherichia coli had shorter survival time than those reconstituted with PBMC that were depleted of Vdelta2 T cells. Thus, human Vgamma2Vdelta2 T cells are likely to play broad-spectrum roles in immunoregulation and immunopathology by influencing MIF secretion and the immunomodulatory function of glucocorticoids.  相似文献   

3.
Inflammatory cytokines such as IFN-gamma and TNF produced by Ag-stimulated CD4(+) and CD8(+) T cells are important in defense against microbial infection. However, production of these cytokines must be tightly regulated to prevent immunopathology. Previous studies, conducted with BALB/c mice, have suggested that 1) CD8(+) T cells maintain IFN-gamma production but transiently produce TNF in the continued presence of Ag and 2) lymphocytic choriomeningitis virus-specific and in vitro-propagated effector CD8(+) T cells could rapidly cycle IFN-gamma production ON/OFF/ON in response to Ag exposure, removal, and re-exposure. In contrast with CD8(+) T cells, our results show that Listeria monocytogenes-specific CD4(+) T cells from C57BL/6 mice rapidly initiate (ON cycling) and maintain production of both IFN-gamma and TNF in the continued presence of Ag. Upon Ag removal, production of both cytokines rapidly ceases (OFF cycling). However, if the initial stimulation was maximal, Ag-specific CD4(+) T cells were unable to reinitiate cytokine production after a second Ag exposure. Furthermore, L. monocytogenes-specific CD8(+) T cells in the same mice and lymphocytic choriomeningitis virus-specific CD8(+) T cells in BALB/c mice also underwent ON/OFF cycling, but if the initial Ag stimulus was maximal, they could not produce IFN-gamma after Ag re-exposure. As the initial Ag dose was reduced, the number of cells producing cytokine in response to the second Ag exposure exhibited a corresponding increase. However, T cells that were marked for IFN-gamma secretion during the first stimulation did not contribute cytokine production during the second stimulation. Thus, T cells are not able to undergo rapid ON/OFF/ON cytokine cycling in vitro in response to Ag.  相似文献   

4.
Tumor necrosis factor-alpha (TNF-alpha) plays a crucial role in the early defense against pathogens. This cytokine is produced by several cell types including T lymphocytes expressing the alphabeta as well as the gammadelta T cell receptor (TcR). In human, the circulating gammadelta T cells, which mostly express Vgamma9Vdelta2 TcR, have been strongly suggested to play an important protective role against infectious agents. These activated cells early produce high amounts of TNF-alpha, which induce a determinant beneficial effect against development of intracellular pathogens; however, sustained production of this cytokine can result in immunopathological diseases. The signals that regulate TNF-alpha production in Vgamma9Vdelta2 T cells are totally unknown. In primary alphabeta T cells, TNF-alpha production was shown to necessitate engagement of the TcR and CD28, and to be independent of the p38 mitogen activated protein kinase pathway. We demonstrate herein that, in contrast to alphabeta T cells, TNF-alpha production in Vgamma9Vdelta2 T lymphocytes is independent of CD28 costimulation and highly dependent on TcR-induced p38 kinase and extracellular signal-regulated kinase 2 pathway activation for optimal cytokine release. Moreover, we bring elements supporting the idea that the "activation threshold" of gammadelta T cells leading to cytokine production is lower than that of alphabeta T cells.  相似文献   

5.
Human Vgamma2/Vdelta2(+) gammadelta T cells respond to low molecular-mass nonpeptide Ags in a gammadelta TCR-dependent manner. Although requirements of Ag presentation have remained controversial, we have indicated that specific responses of the primary gammadelta T cells to pamidronate were dependent on monocytic adherent cells for Ag presentation. Here, we show that human tumor cells can efficiently present aminobisphosphonate and pyrophosphomonoester compounds to gammadelta T cells, inducing specific proliferation and IFN-gamma production. gammadelta TCR dependency of the response to Ag-pulsed tumor cells was confirmed by using a Jurkat line transfected with a Vgamma2/Vdelta2 gammadelta TCR. Furthermore, gammadelta T cells exhibited markedly enhanced cytotoxicity against the Ag-pulsed tumor cells as compared with untreated tumor cells. Survey of a number of human tumor cell lines of different origins revealed that the majority of them became susceptible for gammadelta T cell-mediated cytotoxicity following the Ag pulsing except for breast cancer lines so far examined, while normal PHA blast cells remained resistant. The results not only imply a unique mode of nonpeptide Ag recognition by human gammadelta T cells but also may provide a novel strategic clue for immunotherapy of human malignancy.  相似文献   

6.
Human gammadelta T cells respond to nonpeptide Ags such as pyrophosphomonoesters and alkylamines in a gammadelta TCR-dependent manner in the absence of other APCS: Recently, aminobisphosphonates such as pamidronate have also been shown to activate human gammadelta T cells. In the present study, we indicate that activation of primary gammadelta T cells by pamidronate strictly depends on the presence of monocyte-lineage cells, unlike that by pyrophosphomonoesters. Thus, although pamidronate induced cell clustering, proliferation, and IFN-gamma production of gammadelta T cells in the culture of PBMC, it failed to induce any of these activities in the culture of purified primary gammadelta T cells. By adding back the purified monocytes, however, both cell clustering and IFN-gamma production of gammadelta T cells by pamidronate could be restored. The pamidronate-pulsed, but not untreated, myelomonocytic line, THP-1, was capable of activating the purified gammadelta T cells to produce IFN-gamma, which was associated with the down-regulation of gammadelta TCR. Furthermore, pamidronate-pulsed THP-1 cells were significantly more susceptible to gammadelta T cell-mediated cytotoxicity than untreated THP-1. Also, TCR-defective Jurkat T cells transfected with gammadelta TCR genes produced a significant level of IL-2 in response to the pamidronate-pulsed THP-1 cells. These results have suggested strongly that human gammadelta T cells are functionally activated via gammadelta TCR by aminobisphosphonate Ag presented on the surface of monocyte lineage cells rather than directly by its free form.  相似文献   

7.
Innate and adaptive immune responses induced by leptospirosis have not been well characterized. In this study we show that in vitro exposure of naive human PBMC to Leptospira interrogans results in cell proliferation and the production of IFN-gamma, IL-12, and TNF-alpha. Cell proliferation was highest when using high numbers of Leptospira. Optimal cell proliferation occurred at 6-8 days, and the majority of cells contained in these cultures were gamma/delta T cells. These cultures showed a 10- to 50-fold expansion of gamma/delta T cells compared with the initial cellular input. Additionally, these cultures contained elevated numbers of NK cells. In contrast, exposure of PBMC to low numbers of Leptospira failed to induce gammadelta T cell or NK cell expansion, but induced significant alphabeta T cell expansion. Vgamma9/Vdelta2 were expressed on all gamma/delta T cells expanded by exposure of PBMC to Leptorspira: Leptospira stimulation of purified TCRgammadelta(+) T cells, obtained from 8-day cultures of Leptospira-stimulated PBMC, induced high levels of IFN-gamma production, but no cell proliferation, suggesting that such stimulation of gammadelta T cells did not depend on specialized accessory cells or Ag processing. Finally, in patients with acute leptospirosis, there was a significant (4- to 5-fold) increase in the number of peripheral blood TCRgammadelta(+) T cells. These results indicate that Leptospira can activate gammadelta T cells and alphabeta T cells and will guide further investigations into the roles of these T cell populations in host defense and/or the pathology of leptospirosis.  相似文献   

8.
9.
After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  相似文献   

10.
Effective host defense against Mycobacterium tuberculosis requires the induction of Th1 cytokine responses. We investigated the regulated expression and functional role of the inducible costimulator (ICOS), a receptor known to regulate Th cytokine production, in the context of human tuberculosis. Patients with active disease, classified as high responder (HR) or low responder (LR) patients according to their in vitro T cell responses against the Ag, were evaluated for T cell expression of ICOS after M. tuberculosis-stimulation. We found that ICOS expression significantly correlated with IFN-gamma production by tuberculosis patients. ICOS expression levels were regulated in HR patients by Th cytokines: Th1 cytokines increased ICOS levels, whereas Th2-polarizing conditions down-regulated ICOS in these individuals. Besides, in human polarized Th cells, engagement of ICOS increased M. tuberculosis IFN-gamma production with a magnitude proportional to ICOS levels on those cells. Moreover, ICOS ligation augmented Ag-specific secretion of the Th1 cytokine IFN-gamma from responsive individuals. In contrast, neither Th1 nor Th2 cytokines dramatically affected ICOS levels on Ag-stimulated T cells from LR patients, and ICOS activation did not enhance IFN-gamma production. However, simultaneous activation of ICOS and CD3 slightly augmented IFN-gamma secretion by LR patients. Together, our data suggest that the regulation of ICOS expression depends primarily on the response of T cells from tuberculosis patients to the specific Ag. IFN-gamma released by M. tuberculosis-specific T cells modulates ICOS levels, and accordingly, ICOS ligation induces IFN-gamma secretion. Thus, ICOS activation may promote the induction of protective Th1 cytokine responses to intracellular bacterial pathogens.  相似文献   

11.
12.
Chronic beryllium disease (CBD) provides a human disorder in which to study the delayed type IV hypersensitivity response to persistent Ag that leads to noncaseating pulmonary granuloma formation. We hypothesized that, in CBD, failure of IL-10 to modulate the beryllium-specific, cell-mediated immune response would result in persistent, maximal cytokine production and T lymphocyte proliferation, thus contributing to the development of granulomatous lung disease. To test this hypothesis, we used bronchoalveolar lavage cells from control and CBD subjects to evaluate the beryllium salt-specific production of endogenous IL-10 and the effects of exogenous human rIL-10 (rhIL-10) on HLA expression, on the production of IL-2, IFN-gamma, and TNF-alpha, and on T lymphocyte proliferation. Our data demonstrate that beryllium-stimulated bronchoalveolar lavage cells produce IL-10, and the neutralization of endogenous IL-10 does not increase significantly cytokine production, HLA expression, or T lymphocyte proliferation. Second, the addition of excess exogenous rhIL-10 partially inhibited the beryllium-stimulated production of IL-2, IFN-gamma, and TNF-alpha; however, we measured no change in T lymphocyte proliferation or in the percentage of alveolar macrophages expressing HLA-DP. Interestingly, beryllium salts interfered with an IL-10-stimulated decrease in the percentage of alveolar macrophages expressing HLA-DR. We conclude that, in the CBD-derived, beryllium-stimulated cell-mediated immune response, low levels of endogenous IL-10 have no appreciable effect; exogenous rhIL-10 has a limited effect on cytokine production and no effect on T lymphocyte proliferation or HLA expression.  相似文献   

13.
Innate immune cells mediate a first line of defense against pathogens and determine the nature of subsequent acquired immune responses, mainly by producing profound amounts of cytokines. Given these diverse tasks, it is predictable that defective NK and gammadelta(+) T cell responses could be the underlying mechanism for the immunological alterations observed in atopic dermatitis (AD). Indeed, the frequencies of circulating NK cells and gammadelta(+) T cells were profoundly reduced in AD patients. They also displayed a defective ability to sustain TNF-alpha and IFN-gamma, but not IL-4, production after in vitro stimulation, and the defect was restricted to innate immune cells. Surprisingly, on the depletion of CD14(+) monocytes, this selective impairment of TNF-alpha and IFN-gamma production was restored to levels comparable to that observed in controls. Release of IL-10 from monocytes was not a major mechanism of the NK and gammadelta(+) T cell dysfunction. Apoptosis as revealed by annexin V binding, was preferentially observed in NK and gammadelta(+) T cells from AD patients when stimulated in the presence of monocytes, and depletion of monocytes significantly protected these cells from apoptotic cell death. Preferential apoptosis of NK cells by activated monocytes in AD patients was cell-contact-dependent. These results indicate that, once NK and gammadelta(+) T cells in AD patients are in immediate contact with activated monocytes, these cells are specifically targeted for apoptosis, leading to the reduced type 1 cytokine production, thereby directing subsequent acquired immune responses toward a type-2 pattern and increasing susceptibility to infection.  相似文献   

14.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

15.
Activation of V gamma 9V delta 2 T cells by NKG2D   总被引:5,自引:0,他引:5  
Human Vgamma9 Vdelta2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of gammadelta and CD8 T cells. This study provides evidence that Vgamma9 Vdelta2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vgamma9 Vdelta2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-alpha but not of IFN-gamma, as well as the release of cytolytic granules by Vgamma9 Vdelta2 T cells. Purified Vgamma9 Vdelta2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vgamma9 Vdelta2 T cells. These remarkable similarities in NKG2D function in NK and Vgamma9 Vdelta2 T cells may open new perspectives for Vgamma9 Vdelta2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.  相似文献   

16.
We investigated the interactions between human monocyte-derived dendritic cells (DCs) and Ag-activated circulating TCR-gammadelta-expressing lymphocytes (Vdelta2). Coculture of immature DCs (iDCs) with peripheral blood Vdelta2 T cells activated with either pyrophosphomonoesters (isopentenyl pyrophosphate; IPP) or aminobiphosphonates (pamidronate; PAM) led to a significant up-modulation of CD86 and MHC class I molecules and to the acquisition of functional features typical of activated DCs. DC activation induced by both IPP- and PAM-stimulated gammadelta T cells was mostly mediated by TNF-alpha and IFN-gamma secreted by activated lymphocytes. However, the effect of PAM-activated gammadelta T cells, but not that of IPP-activated cells, required cell-to-cell contact. Reciprocally, activation of Vdelta2 T cells by PAM, but not by IPP, was dependent on cell contact with iDCs. In fact, when PAM-stimulated DC-gammadelta T cell cocultures were separated by a semipermeable membrane or treated with blocking anti-CD86 Abs, induction of CD25 and CD69 as well as IFN-gamma and TNF-alpha secretion by Vdelta2 cells were strongly reduced. These results demonstrate for the first time a bidirectional activating interaction between iDCs and PAM-stimulated gammadelta T lymphocytes, thus suggesting a potential adjuvant role of this early cross-talk in the therapeutic activity of aminobiphosphonate drugs.  相似文献   

17.
CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-gamma and TNF-alpha production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.  相似文献   

18.
CD8(+) T cells use a number of effector mechanisms to protect the host against infection. We have studied human CD8(+) T cells specific for CMV pp65(495-503) epitope, or for staphylococcal enterotoxin B, for the expression patterns of five cytokines and cytolytic effector molecules before and after antigenic stimulation. Ex vivo, the cytolytic molecule granzyme B was detected in a majority of circulating CMV-specific CD8(+) T cells, whereas perforin was rarely expressed. Both were highly expressed after Ag-specific activation accompanied by CD45RO up-regulation. TNF-alpha, IFN gamma, and IL-2 were sequentially acquired on recognition of Ag, but surprisingly, only around half of the CMV-specific CD8(+) T cells responded to antigenic stimuli with production of any cytokine measured. A dominant population coexpressed TNF-alpha and IFN-gamma, and cells expressing TNF-alpha only, IFN-gamma only, or all three cytokines together also occurred at lower but clearly detectable frequencies. Interestingly, perforin expression and production of IFN-gamma and TNF-alpha in CD8(+) T cells responding to staphylococcal enterotoxin B appeared to be largely segregated, and no IL-2 was detected in perforin-positive cells. Together, these data indicate that human CD8(+) T cells can be functionally segregated in vivo and have implications for the understanding of human CD8(+) T cell differentiation and specialization and regulation of effector mechanisms.  相似文献   

19.
Vgamma9Vdelta2 T cells, a major gammadelta PBL subset in human adults, have been previously implicated in dendritic cell (DC) licensing, owing to their high frequency in peripheral tissues and their ability to produce inflammatory cytokines upon recognition of a broad array of conserved Ags. Although these observations implied efficient recognition of Ag-expressing immature DC (iDC) by Vgamma9Vdelta2 T cells, the role played by DC subsets in activation of these lymphocytes has not been carefully studied so far. We show that iDC, and to a lesser extent mature DC, potentiated Th1 and Th2 cytokine, but not cytolytic or proliferative responses, of established Vgamma9Vdelta2 T cell clones and ex vivo memory Vgamma9Vdelta2 PBL stimulated by synthetic agonists. The ability of iDC to potentiate Vgamma9Vdelta2 production of inflammatory cytokines required for their own maturation suggested that Vgamma9Vdelta2 T cells, despite their strong lytic activity, could promote efficient iDC licensing without killing at suboptimal Ag doses. Accordingly Vgamma9Vdelta2 cells induced accelerated maturation of Ag-expressing iDC but not "bystander" DC, even within mixed cell populations comprising both Ag-expressing and nonexpressing iDC. Furthermore Vgamma9Vdelta2 cells induced full differentiation into IL-12-producing cells of iDC infected by Vgamma9Vdelta2-stimulating mycobacteria that were otherwise unable to induce complete DC maturation. In conclusion the ability of iDC to selectively potentiate cytokine response of memory Vgamma9Vdelta2 T cells could underlie the adjuvant effect of these lymphocytes, and possibly other natural memory T cells, on conventional T cell responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号