首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

3.
Salt-sensitive mutants of Synechocystis were obtained by random cartridge mutagenesis, and one mutant (mutant 4) was characterized in detail. The salt tolerance of mutant 4 was reduced to about 20% of that of the wild-type. This was caused by a defect in the biosynthetic pathway of the osmoprotective compound glucosylglycerol (GG). Salt-treated cells of mutant 4 accumulated the intermediate glucosylglycerol-phosphate (GG-P). Only low levels of phosphate-free GG were detected. The phosphorylated form of GG was not osmoprotective and seemed to be toxic. In vitro enzyme assays revealed that GG-P-phosphatase activity was completely absent in mutant 4, while GG-P-synthase remained unchanged. The integration site of the aphII cartridge in mutant 4 and the corresponding wild-type region was cloned and sequenced. Mutant 4 was complemented to salt resistance after transformation by the cloned wild-type region. The integration of the cartridge led to a deletion of about 1.1 kb of the chromosomal DNA. This affected two of the identified putative protein coding regions, orfII and stpA. The ORFII protein shows a high degree of similarity to the receiver domain of response regulator proteins. Related sequences were not found for StpA. We assume that in mutant 4, regulatory genes necessary for the process of salt adaptation in Synechocystis are impaired. Received: 12 January 1996 / Accepted: 28 May 1996  相似文献   

4.
An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance.  相似文献   

5.
A collection of 17 salt-sensitive mutants of the cyanobacterium Synechocystis sp. strain PCC 6803 was obtained by random cartridge mutagenesis. The genes coding for proteins essential for growth at high salt concentrations were mapped on the completely known genome sequence of this strain. The two genes coding for enzymes involved in biosynthesis of the osmolyte glucosylglycerol were affected in nine mutants. Two mutants defective in a glycoprotease encoding gene gcp showed a reduced salt resistance. Four genes were identified not previously known to be essential for salt tolerance in cyanobacteria. These genes (slr1799, slr1087, sll1061, and sll1062) code for proteins not yet functionally characterized. Received: 21 May 2001 / Accepted: 27 June 2001  相似文献   

6.
7.
A salt-sensitive mutant of Synechocystis sp. strain PCC 6803 defective in the synthesis of the compatible solute glucosylglycerol (GG) was used to search for the gene encoding GG-phosphate synthase (GGPS), the key enzyme in GG synthesis. Cloning and sequencing of the mutated region and the corresponding wild-type region revealed that a deletion of about 13 kb occurred in the genome of mutant 11. This deletion affected at least 10 open reading frames, among them regions coding for proteins showing similarities to trehalose (otsA homolog)- and glycerol-3-phosphate-synthesizing enzymes. After construction and characterization of mutants defective in these genes, it became obvious that an otsA homolog (sll1566) (T. Kaneko et al., DNA Res. 3:109–136, 1996) encodes GGPS, since only the mutant affected in sll1566 showed salt sensitivity combined with a complete absence of GG accumulation. Furthermore, the overexpression of sll1566 in Escherichia coli led to the appearance of GGPS activity in the heterologous host. The overexpressed protein did not show the salt dependence that is characteristic for the GGPS in crude protein extracts of Synechocystis.  相似文献   

8.
Cyanophycin is a natural source of polypetide consisting of aspartic acid as a backbone and arginine as its side chain. After the removal of arginine, the remaining poly-aspartate can be served in numerous industrial and biomedical applications. The synthesis of cyanophycin is catalyzed by cyanophycin synthetase. In this study, we used lactic acid bacteria to produce cyanophycin by nisin-controlled gene expression system (NICE). The cyanophycin synthetase gene cphA of Synechocystis sp. strain PCC6803 was cloned to the vector pNZ8149 followed by transformation into Lactococcus lactis subsp. cremoris NZ3900. The effects of nisin concentrations and the amounts of supplemented aspartic acid and arginine were examined for the production of cyanophycin. Alterations of the terminus of cphA gene were also conducted in an attempt to increase the yield of cyanophycin. An optimal cyanophycin production was noted under a culture condition of log phase induced at 250 ng/mL nisin in M17L medium supplemented with 20 mM arginine and 10 mM aspartic acid. An insertion of glycine residue at the C terminus of cyanophycin synthetase resulted in a yield of 20% of dry cell weight, a 10-fold increase when compared with the wild type. The results showed that recombinant lactic acid bacteria, a GRAS system, could provide an alternative approach of producing cyanophycin suitable for agricultural and biomedical applications.  相似文献   

9.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

10.
11.
12.
Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a recombinant strain of Escherichia coli DH1 harboring plasmid pMa/c5-914::cphA6803, which carries the cyanophycin synthetase structural gene (cphA) from Synechocystis sp. strain PCC6803, was found to be most suitable. Various cultivation conditions for high CGP contents were first optimized in shake flask cultures. The optimized conditions were then successfully applied to 30- and 500-liter fermentation scales in stirred tank reactors. A maximum CGP content of 28% (wt/wt) CGP per cell dry matter was obtained in 6% (vol/vol) protamylasse medium at an initial pH of 7.0 within a cultivation period of only 24 h. The CGP contents obtained with this recombinant strain employing protamylasse medium were higher than those obtained with the same strain cultivated in mineral salts medium or in expensive commercial complex media such as Luria-Bertani or Terrific broth. It was shown that most amino acids present in the protamylasse medium were almost completely utilized by the cells during cultivation. Exceptions were alanine, tryptophan, tyrosine, and most interestingly, arginine. Furthermore, CGP was easily isolated from protamylasse-grown cells by applying the acid extraction method. The CGP exhibited a molecular mass of about 26 to 30 kDa and was composed of 50% (mol/mol) aspartate, 46% (mol/mol) arginine, and 4% (mol/mol) lysine. The use of cheap residual protamylasse could contribute in establishing an economically and also ecologically feasible process for the biotechnological production of CGP.  相似文献   

13.
14.
Sigal Shcolnick  Nir Keren 《BBA》2007,1767(6):814-819
The mrgA protein of the cyanobacterium Synechocystis sp. PCC6803 is a member of the DPS Fe storage protein family. The physiological role of this protein was studied using a disruption mutant in the mrgA gene (slr1894) and by measuring intracellular Fe quotas, 77K chlorophyll fluorescence and growth rates. It was found that the deletion of the mrgA gene did not impair the Fe storage capacity, as the intracellular Fe quotas of the ΔmrgA cells were comparable to those of the wild type. Furthermore, the cellular response to decreasing external Fe concentrations, as detected by the emergence of the CP43′ 77K fluorescence band, was similar in wild type and mutant cultures. On the other hand, a considerable slow down in the growth rate of ΔmrgA cultures was observed upon transfer from Fe replete to Fe depleted medium, indicating impeded utilization of the plentiful intracellular Fe. Based on these results, we suggest that mrgA plays an important role in the transport of intracellular Fe from storage (within bacterioferritins) to biosynthesis of metal cofactors throughout the cell's growth.  相似文献   

15.
When iron becomes limiting, Synechocystis 6803 induces the synthesis of flavodoxin. As a basis for genetic analysis, the flavodoxin-encoding isiB gene of Synechocystis 6803 was cloned and sequenced. The isiB gene was disrupted by insertion of an interposon within the isiB coding region resulting in two Synechocystis 6803 mutant strains, CKF-I and CKF-II. They were distinguished from each other by the orientation of the kanamycin resistance cassette. Photoautotrophic growth of the mutant strains under iron limiting conditions, which are sufficient for induction of flavodoxin in the wild-type cells, demonstrated that IsiB was not essential for Synechocystis 6803.  相似文献   

16.
Abiotic stress slows plant growth and development. Because salt stress, particularly from NaCl, acts as an important limiting factor in agricultural productivity, the identification and manipulation of genes related to salt tolerance could improve crop productivity. Prokaryotic, heat shock protein (Hsp), DnaK from the ubiquitous Hsp70 family is upregulated in cells that are under abiotic stress. Synechocystis spp. cyanobacteria encode at least three potential DnaK proteins in their genome. Here, expressions of dnaK1s and dnaK2s from two Synechocystis spp. PCC6803 (Sy6803) and PCC6906 (Sy6906), enhanced salt tolerance in a dnaK-defective Escherichia coli strain. In contrast, dnaK3s in both strains were ineffective, indicating that dnaK3 is functionally different from dnaK1 and dnaK2 in Synechocystis spp. under salt stress. Ectopic expression of dnaK2s from Sy6803 and Sy6906 conferred salt tolerance in transgenic Arabidopsis plants, which exhibited greater root length, chlorophyll content, fresh weight, and survival rate than wild type plants, all in the presence of NaCl. In transgenic plants, hydrogen peroxide (H2O2) accumulation was reduced under NaCl stress and loss of chlorophyll content was reduced under H2O2 stress. Overall results suggest that dnaK2s from Sy6803 and Sy6906 confer salt and oxidative tolerance in transgenic plants by reduction of H2O2 accumulation.  相似文献   

17.
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.  相似文献   

18.
Sarah Joshua 《BBA》2005,1709(1):58-68
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

19.
20.
The calcium-dependent protein kinase (CDPK) family is needed in plant signaling during various physiological pathways. The Arabidopsis AtCPK6 gene belongs to the subclass of stress-inducible CDPKs, which is stimulated by salt and osmotic stress. To elucidate the physiological function of AtCPK6, transgenic Arabidopsis plants under the control of double CaMV 35S promoter were obtained. AtCPK6 over-expressing plants showed enhanced tolerance to salt/drought stresses. The elevated tolerance of the AtCPK6 over-expressing plants was confirmed by the change of proline and malondialdehyde (MDA). Real-time PCR analyses revealed that the expression levels of several stress-regulated genes were altered in AtCPK6 over-expressing plants. However, cpk6 mutant displayed no obvious difference with control. These results are likely to indicate that AtCPK6 is functionally redundant and a positive regulator involved in the tolerance to salt/drought stress in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号