首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The Erwinia chrysanthemi pecS gene encodes a repressor that negatively regulates the expression of virulence factors such as pectinases or cellulases. The cloned pecS gene was overexpressed using a phage T7 system. The purification of PecS involved DEAE-anion exchange and TSK-heparin columns and delivered the PecS protein that was purified to homogeneity. The purified repressor displayed an 18 kDa apparent molecular mass and an isoelectric point near to neutrality (PI = 6.5). Gel-filtration experiments revealed that the PecS protein is a dimer. Bandshift assays demonstrated that the PecS protein could specifically bind in vitro to the regulatory sites of the in vivo PecS-regulated genes. The interaction between the PecS protein and its DNA-binding site was characterized by a relatively low affinity (about 10?8 M). DNase I footprintings revealed short protected sequences only with the most in vivo PecS-regulated genes. Alignment of these PecS-binding sites did not show a well-conserved consensus sequence. lmmunoblotting demonstrated that the copy number of the PecS protein was approximately 50 dimers per cell. The low affinity of the PecS repressor for its DNA targets and the low cellular PecS content suggest the existence of E. chrysanthemi-specific factors able to potentiate PecS protein activity in vivo.  相似文献   

6.
The pecS regulatory locus negatively modulates the expression of many virulence genes in Erwinia chrysanthemi. This locus consists of two genes, pecS and pecM, divergently transcribed. Previous studies have shown that PecS down-regulates the expression of both pecSand pecMgenes and that PecM is required for full PecS activity. Computer-aided hydropathy analysis of PecM predicted the presence of between 8 to 10 potential transmembrane segments. We analyzed the membrane topology of PecM using the beta-lactamase gene fusion system and obtained the following unique characteristics. PecM contains 10 membrane spanning segments, with both the amino and carboxyl termini located in the cytoplasmic side of the inner membrane. The fourth periplasmic loop, which has a relatively long hydrophilic domain containing 17 amino acid residues, may play an important role in PecM function. The topological model obtained for PecM can be applied to PecM homologues in other bacteria. Measurement of the extrusion of the blue pigment indigoidine by the E. chrysanthemi derivative isogenic mutants pecS, pecM and pecS-pecM revealed that PecM is required for complete efflux of the pigment. Its relation to other efflux systems and its potential physiological role are discussed.  相似文献   

7.
8.
The phytopathogenic enterobacterium Erwinia chrysanthemi strain EC16 produces four isozymes of pectate lyase (PL), an extracellular enzyme that macerates parenchymatous plant tissues and kills plant cells. A 1.8-kilobase EcoRI DNA fragment containing the entire pelE gene was deleted from the E. chrysanthemi chromosome by marker exchange of a cloned fragment that had been modified in vitro. The resulting mutant, UM1001, produced the isozymes PLa, PLb, and PLc, but not PLe. Mutant UM1001 was compared with wild-type E. chrysanthemi, with Escherichia coli JA221, and with JA221 containing expression vectors with cloned pel genes producing high levels of PLe (pPEL748) or PLb (pPEL343) for the ability to multiply and cause symptoms in intact potato tubers. Tubers were injected with less than 100 bacteria per inoculation site and incubated aerobically or anaerobically. While maceration occurred only in anaerobically incubated tubers, all of the bacteria, including nonpectolytic E. coli controls, multiplied substantially under all conditions. E. coli JA221(pPEL748) caused significantly more maceration than E. coli JA221(pPEL343) or wild-type E. chrysanthemi. Mutant UM1001 caused significantly less maceration than the wild-type E. chrysanthemi. The results establish the importance of PLe in the pectolytic arsenal of E. chrysanthemi by demonstrating that production of PLe can enable E. coli to aggressively macerate tuber tissue and that deletion of pelE significantly diminishes the virulence of E. chrysanthemi.  相似文献   

9.
A β-glucosidase/xylosidase gene from Erwinia chrysanthemi strain D1 was cloned and sequenced. This gene, named bgxA, encodes a ca. 71 kDa protein product which, following removal of the leader peptide, resulted in a ca. 69 kDa mature protein that accumulated in the periplasmic space of E. chrysanthemi strain D1 and Escherichia coli cells expressing the cloned gene. The protein exhibited both β-glucosidase and β-xylosidase activities but gave no detectable activity on xylan or carboxymethyl cellulose. The enzyme was classified as a type 3 glycosyl hydrolase, but was unusual in having a truncated B region at the carboxyl-terminus. Several E. chrysanthemi strains isolated from corn produced the glucosidase/xylosidase activity but not those isolated from dicot plants. However, bgxA marker exchange mutants of strain D1 were not detectably altered in virulence on corn leaves.  相似文献   

10.
The type II secretion system (main terminal branch of the general secretion pathway) is used by diverse gram-negative bacteria to secrete extracellular proteins. Proteins secreted by this pathway are synthesized with an N-terminal signal peptide which is removed upon translocation across the inner membrane, but the signals which target the mature proteins for secretion across the outer membrane are unknown. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete several isozymes of pectate lyase (Pel) by the out-encoded type II pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed pel genes from the other species, suggesting the existence of species-specific secretion signals within these proteins. The functional cluster of E. chrysanthemi out genes carried on cosmid pCPP2006 enables Escherichia coli to secrete E. chrysanthemi, but not E. carotovora, Pels. We exploited the high sequence similarity between E. chrysanthemi PelC and E. carotovora Pel1 to construct 15 hybrid proteins in which different regions of PelC were replaced with homologous sequences from Pel1. The differential secretion of these hybrid proteins by E. coli(pCPP2006) revealed M118 to D175 and V215 to C329 as regions required for species-specific secretion of PelC. We propose that the primary targeting signal is contained within the external loops formed by G274 to C329 but is dependent on residues in M118 to D170 and V215 to G274 for proper positioning.  相似文献   

11.
Bacillus subtilis is intensively studied as a model organism for the development of bacterial biofilms or pellicles. A key component is currently undefined exopolysaccharides produced from proteins encoded by genes within the eps locus. Within this locus are four genes, epsHIJK, known to be essential for pellicle formation. We show they encode proteins synthesizing the broadly expressed microbial carbohydrate poly-N-acetylglucosamine (PNAG). PNAG was present in both pellicle and planktonic wild-type B. subtilis cells and in strains with deletions in the epsA–G and -L–O genes but not in strains deleted for epsH–K. Cloning of the B. subtilis epsH–K genes into Escherichia coli with in-frame deletions in the PNAG biosynthetic genes pgaA–D, respectively, restored PNAG production in E. coli. Cloning the entire B. subtilis epsHIJK locus into pga-deleted E. coli, Klebsiella pneumoniae, or alginate-negative Pseudomonas aeruginosa restored or conferred PNAG production. Bioinformatic and structural predictions of the EpsHIJK proteins suggest EpsH and EpsJ are glycosyltransferases (GT) with a GT-A fold; EpsI is a GT with a GT-B fold, and EpsK is an α-helical membrane transporter. B. subtilis, E. coli, and pga-deleted E. coli carrying the epsHIJK genes on a plasmid were all susceptible to opsonic killing by antibodies to PNAG. The immunochemical and genetic data identify the genes and proteins used by B. subtilis to produce PNAG as a significant carbohydrate factor essential for pellicle formation.  相似文献   

12.
The type II or Sec-dependent secretion system is used by diverse Gram-negative bacteria for secretion of extracellular proteins. Of the 12–15 proteins involved in secretion, the requirement for many has not been demonstrated and little is known about their functions in the secretion process. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete extracellular pectate lyases (Pels) using the type II or Out pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed genes from the other species, suggesting the presence of species-specific recognition factors in the Out systems of the two Erwinia species. We previously reported the isolation of a cosmid clone, pCPP2006, from E. chrysanthemi EC16, which enables Escherichia coli to secrete heterologously expressed E. chrysanthemi Pels. Sequencing in a region required for secretion revealed the presence of 12 genes, outC-M and outO. We report here the construction of functionally non-polar mutations in each gene in the outC-M operon and outS and outB using a polAts strain of E. coli to facilitate homologous recombination between out genes carrying deletions and their wild-type copies on pCPP2006. By testing for complementation of each deletion with wild-type out genes from E. chrysanthemi EC16 and E. carotovora SCRI193 we have demonstrated that: (i) each out gene is required for secretion of E. chrysanthemi PelE from E. coli with the exception of outH; (ii) each mutation can be complemented by its homologue from E. carotovora, except for outC and outD; (iii) outC and outD from E. carotovora do not confer secretion of Pel1 on the E. chrysanthemi Out system; and (iv) Pel1 secretion can be conferred on the E. chrysanthemi Out system by the presence of outC-M, S and B from E. carotovora. The data suggest that OutC and OutD are gatekeepers of the Out system involved in recognition of Pels targeted for secretion but that OutC and OutD from E. carotovora cannot be successfully assembled into the E. chrysanthemi Out system.  相似文献   

13.
Erwinia chrysanthemi pv. zeae is one of the Erwinia chrysanthemi pathovars that infects on both dicotyledons and monocotyledons. However, little is known about the molecular basis and regulatory mechanisms of its virulence. By using a transposon mutagenesis approach, we cloned the genes coding for an E. chrysanthemi pv. zeae synthase of acyl-homoserine lactone (AHL) quorum-sensing signals (expIEcz) and a cognate response regulator (expREcz). Chromatography analysis showed that expIEcz encoded production of the AHL signal N-(3-oxo-hexanoyl)-homoserine lactone (OHHL). Null mutation of expIEcz in the E. chrysanthemi pv. zeae strain EC1 abolished AHL production, increased bacterial swimming and swarming motility, disabled formation of multicell aggregates, and attenuated virulence of the pathogen on potato tubers. The mutation also marginally reduced the inhibitory activity of E. chrysanthemi pv. zeae on rice seed germination. The mutant phenotypes were rescued by either exogenous addition of AHL signal or in trans expression of expIEcz. These data demonstrate that the AHL-type QS signal plays an essential role in modulation of E. chrysanthemi pv. zeae cell motility and the ability to form multicell aggregates and is involved in regulation of bacterial virulence.  相似文献   

14.
《Gene》1997,186(2):201-205
A recombinant plasmid (pMG1) carrying Pasteurella haemolytica A1 DNA which complements a tonB mutation of Escherichia coli has been isolated. E. coli tonB metE which carries pMG1 exhibits growth kinetics in the presence of vitamin B12 similar to that of the wild-type host. In addition, the complemented E. coli is susceptible to killing by bacteriophage φ80 and colicin B. Analysis of the nucleotide sequence in the complementing DNA showed that it codes for three genes in the order of exbB-exbD-tonB. This genetic organization has been reported in Haemophilus influenzae, H. ducreyi, Pseudomonas putida and Vibrio cholerae, and may represent a separate lineage of evolution from that of the Enterobacteriaceae in which tonB is unlinked with the accessory genes exbB and exbD. A comparison of the DNA flanking the exbB-exbD-tonB locus in P. haemolytica A1 and H. influenzae showed that the flanking regions are completely different between the two organisms.  相似文献   

15.
16.
Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.  相似文献   

17.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

18.
Recombinant plasmids bearing the Escherichia coli K-12 aspartase gene (aspA) and the plasmid partition locus (par) were introduced into a catabolite repression-resistant strain of E. coli B, AT202, constructed by mutational and transductional methods. Plasmid pNK101(pBR322-aspA-par) was stably maintained in cells of AT202 even after 30 cell generations, while pYT471(pBR322-aspA), which bore no par locus, was lost at high frequencies from the host cells. Strain AT202 harboring pNK101 produced 3-fold and 80-fold more aspartase than the wild-type E. coli B harboring pNK101 and the wild-type E. coli B strain, respectively. The maximum amount of aspA product (aspartase) was 40–45% of the total cellular protein.  相似文献   

19.
Escherichia coli serotype O157 is still a major global healthcare problem. However, only limited information is now available on the molecular and serological detection of pathogenic bacteria. Therefore, the development of appropriate strategies for their rapid identification and monitoring is still needed. In general, the sequence analysis based on stx, slt, eae, hlyA, rfb, and fliC h7 genes is widely employed for the identification of E. coli serotype O157; but there have been critical defects in the diagnosis and identification of E. coli serotype O157, in that they are also present in other E. coli serogroups. In this study, NCBI-BLAST searches using the nucleotide sequences of the putative regulatory protein gene from E. coli O157:H7 str. Sakai found sequence difference at the serotype level. The specific primers from the putative regulatory protein gene were designed and investigated for their sensitivity and specificity for detecting the pathogen in environment water samples. The specificity of the primer set was evaluated using genomic DNA from 8 isolates of E. coli serotype O157 and 32 other reference strains. In addition, the sensitivity and specificity of this assay were confirmed by successful identification of E. coli serotype O157 in environmental water samples. In conclusion, this study showed that the newly developed quantitative serotype-specific PCR method is a highly specific and efficient tool for the surveillance and rapid detection of high-risk E. coli serotype O157.  相似文献   

20.
A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC?3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50?°C. A single ORF of 999?nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family?8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type?II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号