首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of insulin-like growth factor I (IGF-I) signalling pathways have been shown to extend lifespans in various lower species, including the nematode Caenorhabditis elegans. In order to investigate this relationship in a mammalian species, a series of experiments were carried out with a mouse model heterozygous for a mutation in the IGF-I receptor gene. These heterozygous mice only had slight post-natal growth retardation, but had a lifespan 26% longer than normal. Their fertility and dietary intake were unaffected. The mechanism for increased lifespan in these mutant mice appears to be enhanced resistance to oxidative stress: heterozygous mice had a greater survival rate subsequent to severe oxidative stress generated in vivo than wild-type mice, and cells from heterozygous animals had a better resistance to hydrogen peroxide in vitro than cells from wild-type animals. Resistance to oxidative stress in these mutant animals could be caused by decreased phosphorylation of molecules downstream of the IGF-I receptor in the IGF-I signalling pathway, one of which is thought to be p66shc. Whether this link between reduced IGF-I signalling and longevity is conserved in other mammalian species, including humans, is presently not known. If it was, it could have implications for growth hormone therapy, which increases serum IGF-I levels.  相似文献   

2.
Caloric restriction (CR) extends the life span and health span of a variety of species and slows the progression of age-related hearing loss (AHL), a common age-related disorder associated with oxidative stress. Here, we report that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacetylase Sirt3, a member of the sirtuin family. In response to CR, Sirt3 directly deacetylates and activates mitochondrial isocitrate dehydrogenase 2 (Idh2), leading to increased NADPH levels and an increased ratio of reduced-to-oxidized glutathione in mitochondria. In cultured cells, overexpression of Sirt3 and/or Idh2 increases NADPH levels and protects from oxidative stress-induced cell death. Therefore, our findings identify Sirt3 as an essential player in enhancing the mitochondrial glutathione antioxidant defense system during CR and suggest that Sirt3-dependent mitochondrial adaptations may be a central mechanism of aging retardation in mammals.  相似文献   

3.
Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum-fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean (p < 0.001) and maximum lifespan (p < 0.04) and significant reduction in the incidence of severe renal disease (p < 0.01). CR rats demonstrated the greatest mean and maximum lifespan (p < 0.001) and the lowest rate of death as compared to AL-fed rats (0.13). Taken together, these observations provide the most direct evidence to date that a reduction in fat mass, specifically VF, may be one of the possible underlying mechanisms of the anti-aging effect of CR.  相似文献   

4.
Ischemic tolerance decreases with aging, and the cardioprotective effect of ischemic preconditioning (IPC) is impaired in middle-aged animals. We have demonstrated that short-term caloric restriction (CR) improves myocardial ischemic tolerance in young and old animals via the activation of adiponectin-AMP-activated protein kinase (AMPK)-mediated signaling. However, it is unknown whether prolonged CR confers cardioprotection in a similar manner. Furthermore, little is known regarding the myocardial expression of silent information regulator 1 (Sirt1; which reportedly mediates various aspects of the CR response) with prolonged CR. Thus, 6-mo-old male Fischer-344 rats were randomly divided into ad libitum (AL) and CR groups. Six months later, isolated perfused hearts were subjected to 25 min of global ischemia followed by 120 min of reperfusion with or without IPC. CR improved the recovery of left ventricular function and reduced infarct size after ischemia-reperfusion and restored the IPC effect. Serum adiponectin levels increased, but myocardial levels of total and phosphorylated AMPK did not change with prolonged CR. Total levels of Sirt1 did not change with CR; however, in the nuclear fraction, CR significantly increased Sirt1 and decreased acetyl-histone H3. Eleven rats from each group were given N-nitro-l-arginine methyl ester in their drinking water for 4 wk before death. In these hearts, chronic inhibition of nitric oxide synthase prevented the increase in nuclear Sirt1 content by CR and abrogated CR-induced cardioprotection. These results demonstrate that 1) prolonged CR improves myocardial ischemic tolerance and restores the IPC effect in middle-aged rats and 2) CR-induced cardioprotection is associated with a nitric oxide-dependent increase in nuclear Sirt1 content.  相似文献   

5.
Imai S 《Aging cell》2007,6(6):735-737
The Sir2 (silent information regulator 2) family of nicotinamide adenine dinucleotide-dependent deacetylases has been implicated in the regulation of aging and longevity across a wide variety of organisms. Although controversial, Sir2 proteins have also been implicated as key mediators for the beneficial effects of caloric restriction (CR) on aging and longevity. In this issue, Bordone et al . report that transgenic mice in which the mammalian Sir2 ortholog Sirt1 is overexpressed mimic the physiological changes in response to CR. These findings have important implications for the development of CR mimetics and perhaps also for lifespan extension.  相似文献   

6.
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.  相似文献   

7.
Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age‐related diseases in a wide range of animals, including non‐human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age‐related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.  相似文献   

8.
Reduced function mutations in the insulin/IGF-I signaling pathway increase maximal lifespan and health span in many species. Calorie restriction (CR) decreases serum IGF-1 concentration by ~40%, protects against cancer and slows aging in rodents. However, the long-term effects of CR with adequate nutrition on circulating IGF-1 levels in humans are unknown. Here we report data from two long-term CR studies (1 and 6 years) showing that severe CR without malnutrition did not change IGF-1 and IGF-1 : IGFBP-3 ratio levels in humans. In contrast, total and free IGF-1 concentrations were significantly lower in moderately protein-restricted individuals. Reducing protein intake from an average of 1.67 g kg(-1) of body weight per day to 0.95 g kg(-1) of body weight per day for 3 weeks in six volunteers practicing CR resulted in a reduction in serum IGF-1 from 194 ng mL(-1) to 152 ng mL(-1). These findings demonstrate that, unlike in rodents, long-term severe CR does not reduce serum IGF-1 concentration and IGF-1 : IGFBP-3 ratio in humans. In addition, our data provide evidence that protein intake is a key determinant of circulating IGF-1 levels in humans, and suggest that reduced protein intake may become an important component of anticancer and anti-aging dietary interventions.  相似文献   

9.
10.
To investigate whether mice genetically unaltered by many generations of laboratory selection exhibit similar hormonal and demographic responses to caloric restriction (CR) as laboratory rodents, we performed CR on cohorts of genetically heterogeneous male mice which were grandoffspring of wild-caught ancestors. Although hormonal changes, specifically an increase in corticosterone and decrease in testosterone, mimicked those seen in laboratory-adapted rodents, we found no difference in mean longevity between ad libitum (AL) and CR dietary groups, although a maximum likelihood fitted Gompertz mortality model indicated a significantly shallower slope and higher intercept for the CR group. This result was due to higher mortality in CR animals early in life, but lower mortality late in life. A subset of animals may have exhibited the standard demographic response to CR in that the longest-lived 8.1% of our animals were all from the CR group. Despite the lack of a robust mean longevity difference between groups, we did note a strong anticancer effect of CR as seen in laboratory rodents. Three plausible interpretations of our results are the following: (1) animals not selected under laboratory conditions do not show the typical CR effect; (2) because wild-derived animals eat less when fed AL, our restriction regime was too severe to see the CR effect; or (3) there is genetic variation for the CR effect in wild populations; variants that respond to CR with extended life are inadvertently selected for under conditions of laboratory domestication.  相似文献   

11.
Aquaporin-1(AQP1) and AQP2 are members of the aquaporin family of cell membrane water channel transport proteins and have been implicated in the regulation of renal water excretion. We have previously shown that calorie restriction (CR) relative to ad libitum (AL) feeding extends lifespan and delays the onset of autoimmune kidney disease in lupus-prone (NZBxNZW)F1 (B/W) mice. To determine if AQP1 and/or AQP2 expression is influenced by CR, mice were fed an AL or CR (40% less food) diet until 4 (young) or 9 (old) months of age when mice were sacrificed. Kidneys were removed and the expression of AQP1 and AQP2 was determined at the protein and mRNA levels using western blotting and RT-PCR respectively. While age did not significantly increase AQP1 expression in the AL groups, CR did increase both the protein (1.4-fold) and mRNA (2.4-fold) levels. In old mice, AQP1 expression was higher (1.8-fold) in CR compared to the AL group while CR had no effect in young mice. In contrast, AQP2 showed an age related decrease (55%) in the AL groups and an increase in the protein (8.4-fold) and mRNA (1.7-fold) levels in the CR groups. Relative to AL, CR decreased AQP2 expression at the protein (90%) and mRNA (50%) levels in the young mice while an increase at the protein (2.9-fold) and mRNA (1.9-fold) levels was evident in the old mice. Interestingly, a significant increase in water intake per gram body weight was found in both young and old CR fed mice when compared to their AL counterparts which may contribute to the prevention of autoimmune disease with age and differences in longevity. These data show, for the first time, significant age and diet influences in renal AQP1 and AQP2 expression at both protein and mRNA levels in lupus-prone mice.  相似文献   

12.
Caloric restriction (CR) is the most successful method of extending both median and maximal lifespans in rodents and other short-lived species. It is not yet clear whether this method of life extension will be successful in longer-lived species, possibly including humans; however, trials in rhesus monkeys are underway. We have examined the cellular proliferative potential of cells from CR and AL (ad libitum fed) monkey skin cells using two different bioassays: colony size analysis (CSA) of dermal fibroblasts isolated and cloned directly from the skin and beta-galactosidase staining at pH 6.0 (BG-6.0) of epidermal cells in frozen sections of skin. Decreases in both proliferative markers occurred with age, but no differences were observed between CR and AL animals. Skin biopsies were obtained from AL and CR rhesus monkeys from two different aging colonies, one at the National Institute on Aging (NIA) and one at the University of Maryland-Baltimore (UMB). These biopsies were used as a source of tissue sections and cells for two biomarkers of aging assays. The CR monkeys had been maintained for 9–12 years on approximately 70% of the caloric intake of control AL animals. In the CSA studies, the fraction of small clones increased significantly and the fraction of large clones decreased significantly with increasing age in AL monkeys. The frequency of epidermal BG-6.0 staining cells increased with age in older (>22 years) AL monkeys, but most predominately in those of the UMB colony, which were somewhat heavier than the NIH AL controls. Old monkeys on CR tended to have fewer BG-6.0-positive cells relative to old AL-derived epidermis, but this effect was not significant. These results indicate that cellular proliferative potential declined with age in Macaca mulatta, but was not significantly altered by CR under these conditions. Although these experiments are consistent with an absence of effect of CR on monkey skin cell proliferative potential, we have found in previous experiments with mice that a longer duration of CR (as a fraction of total lifespan) was needed to demonstrate CR-related improvement in clone size in mice. Further studies on the now mid-aged monkeys will be needed as their age exceeds 20 years to conclusively rule out an effect of CR on proliferative potential of skin cells from these primates. J. Cell. Physiol. 180:123–130, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
Adenylyl cyclase type 5 knockout mice (AC5 KO) live longer and are stress resistant, similar to calorie restriction (CR). AC5 KO mice eat more, but actually weigh less and accumulate less fat compared with WT mice. CR applied to AC5 KO results in rapid decrease in body weight, metabolic deterioration, and death. These data suggest that despite restricted food intake in CR, but augmented food intake in AC5 KO, the two models affect longevity and metabolism similarly. To determine shared molecular mechanisms, mRNA expression was examined genome‐wide for brain, heart, skeletal muscle, and liver. Significantly more genes were regulated commonly rather than oppositely in all the tissues in both models, indicating commonality between AC5 KO and CR. Gene ontology analysis identified many significantly regulated, tissue‐specific pathways shared by the two models, including sensory perception in heart and brain, muscle function in skeletal muscle, and lipid metabolism in liver. Moreover, when comparing gene expression changes in the heart under stress, the glutathione regulatory pathway was consistently upregulated in the longevity models but downregulated with stress. In addition, AC5 and CR shared changes in genes and proteins involved in the regulation of longevity and stress resistance, including Sirt1, ApoD, and olfactory receptors in both young‐ and intermediate‐age mice. Thus, the similarly regulated genes and pathways in AC5 KO and CR mice, particularly related to the metabolic phenotype, suggest a unified theory for longevity and stress resistance.  相似文献   

14.
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387–618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and “ad libitum” control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.  相似文献   

15.
16.
17.
Sirtuin 1 (Sirt1) is an NAD+-dependent protein deacetylase that is proposed to mediate many health-promoting effects of calorie restriction (CR). We recently reported that short-term CR increased the bile acid (BA) pool size in mice, likely due to increased BA synthesis in liver. Given the important role of Sirt1 in the regulation of glucose, lipid, as well as BA metabolism, we hypothesized that the CR-induced increase in BAs is Sirt1-dependent. To address this, the present study utilized genetically-modified mice that were Sirt1 loss of function (liver knockout, LKO) or Sirt1 gain of function (whole body-transgenic, TG). Three genotypes of mice (Sirt1-LKO, wild-type, and Sirt1-TG) were each randomly divided into ad libitum or 40% CR feeding for one month. BAs were extracted from various compartments of the enterohepatic circulation, followed by BA profiling by UPLC-MS/MS. CR increased the BA pool size and total BAs in serum, gallbladder, and small intestine. The CR-induced increase in BA pool size correlated with the tendency of increase in the expression of the rate-limiting BA-synthetic enzyme Cyp7a1. However, in contrast to the hypothesis, the CR-induced increase in BA pool size and Cyp7a1 expression was still observed with ablated expression of Sirt1 in liver, and completely suppressed with whole-body overexpression of Sirt1. Furthermore, in terms of BA composition, CR increased the ratio of 12α-hydroxylated BAs regardless of Sirt1 genotypes. In conclusion, the CR-induced alterations in BA pool size, BA profiles, and expression of BA-related genes do not appear to be dependent on Sirt1.  相似文献   

18.
The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and “dietary restriction” in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.  相似文献   

19.
Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein   总被引:2,自引:0,他引:2  
Kahyo T  Mostoslavsky R  Goto M  Setou M 《FEBS letters》2008,582(17):2479-2483
Caloric restriction (CR) is known to promote longevity in various species. Sirtuin-mediated deacetylation has been shown to be related to the promotion of longevity in some species. Here, we show that CR of rats led to an increase in the level of Werner syndrome protein (WRN), a recognized DNA repair protein. In addition, CR simultaneously increased the level of SIRT1, a mammalian sirtuin. In HEK293T cells, sirtuin inhibitors decreased the WRN level, and this effect was suppressed by proteasomal inhibitors. Furthermore, we found a decrease in the WRN level in Sirt1-deficient mice. These results indicate that sirtuin-mediated deacetylation stabilizes WRN. STRUCTURED SUMMARY:  相似文献   

20.
Small molecules that regulate lifespan: evidence for xenohormesis   总被引:8,自引:0,他引:8  
Barring genetic manipulation, the diet known as calorie restriction (CR) is currently the only way to slow down ageing in mammals. The fact that CR works on most species, even microorganisms, implies a conserved underlying mechanism. Recent findings in the yeast Saccharomyces cerevisiae indicate that CR extends lifespan because it is a mild biological stressor that activates Sir2, a key component of yeast longevity and the founding member of the sirtuin family of deacetylases. The sirtuin family appears to have first arisen in primordial eukaryotes, possibly to help them cope with adverse conditions. Today they are found in plants, yeast, and animals and may underlie the remarkable health benefits of CR. Interestingly, a class of polyphenolic molecules produced by plants in response to stress can activate the sirtuins from yeast and metazoans. At least in the case of yeast, these molecules greatly extend lifespan by mimicking CR. One explanation for this surprising observation is the 'xenohormesis hypothesis', the idea that organisms have evolved to respond to stress signalling molecules produced by other species in their environment. In this way, organisms can prepare in advance for a deteriorating environment and/or loss of food supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号