首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of photosystem II (PS II). A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Chlorophyll fluorescence induction and Q(A)(-) decay kinetics analyses were performed. Decreasing amounts of expressed PsbP protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(V)/F(M)). This was primarily due to the loss of the J to I transition. Analysis of the fast fluorescence rise kinetics indicated no significant change in the number of PS II(beta) centers present in the mutants. Analysis of Q(A)(-) decay kinetics in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea indicated a defect in electron transfer from Q(A)(-) to Q(B), whereas experiments performed in the presence of this herbicide indicated that charge recombination between Q(A)(-) and the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the PsbP protein. These results demonstrate that the amount of functional PS II reaction centers is compromised in the plants that exhibited intermediate and low amounts of the PsbP protein. Plants that lacked detectable PsbP were unable to survive in the absence of sucrose, indicating that the PsbP protein is required for photoautotrophy. Immunological analysis of the PS II protein complement indicated that significant losses of the CP47 and D2 proteins, and intermediate losses of the CP43 and D1 proteins, occurred in the absence of the PsbP protein. This demonstrates that the extrinsic protein PsbP is required for PS II core assembly/stability.  相似文献   

2.
PSII activity was inhibited after Spirulina platensis cells were incubated with different salt concentrations (0-0.8 M NaCl) for 12 h. Flash-induced fluorescence kinetics showed that in the absence of DCMU, the half time of the fast and slow components decreased while that of the middle component increased considerably with increasing salt concentration. In the presence of DCMU, fluorescence relaxation was dominated by a 0.6s component in control cells. After salt stress, this was partially replaced by a faster new component with half time of 20-50 ms. Thermoluminescence measurements revealed that S(2)Q(A)(-) and S(2)Q(B)(-) recombinations were shifted to higher temperatures in parallel and the intensities of the thermoluminescence emissions were significantly reduced in salt-stressed cells. The period-four oscillation of the thermoluminescence B band was highly damped. There were no significant changes in contents of CP47, CP43, cytochrome c550, and D1 proteins. However, content of the PsbO protein in thylakoid fraction decreased but increased significantly in soluble fraction. The results suggest that salt stress leads to a modification of the Q(B) niche at the acceptor side and an increase in the stability of the S(2) state at the donor side, which is associated with a dissociation of the PsbO protein.  相似文献   

3.
Three independent three-dimensional reconstructions of the spinach photosystem II-light-harvesting complex supercomplex were derived from single particle analyses of non-stained, vitrified samples imaged by electron microscopy. Each reconstruction was found to differ significantly in the composition of the lumenal oxygen-evolving complex extrinsic proteins. From difference mapping, aided by electron microscopy of negatively stained selectively washed samples, regions of density were assigned to the PsbO and PsbP/PsbQ proteins. Interpretation of the density assigned to the PsbO protein was explored using computer-aided structural predictions. PsbO is calculated to be mainly a beta-protein (38% beta) composed of two domains within an overall elongated shape (Pazos, F., Heredia, P., Valencia, A., and De Las Rivas, J. (2001) Proteins Struct. Funct. Genet. 45, 372-381). The positioning and fitting of the proposed structural model for the PsbO protein within the three-dimensional map indicated that there is a single copy per reaction center. Moreover, the structural model derived for PsbO, together with difference mapping, indicates that this protein stretches across the surface of the reaction center with its N- and C-terminal domains located toward the CP47 and CP43 side, respectively. This structural assignment is discussed in terms of the recent x-ray-derived cyanobacterial model of PSII (Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743).  相似文献   

4.
Oxygen-evolving photosystem II (PSII) complexes of Euglena gracilis were isolated and characterized. (1) The PSII complexes contained three extrinsic proteins of 33 kDa (PsbO), 23 kDa (PsbP) and 17 kDa (PsbQ), and showed oxygen-evolving activity of around 700 micromol O2 (mg Chl)(-1) h(-1) even in the absence of Cl- and Ca2+ ions. (2) NaCl-treatment removed not only PsbP and PsbQ but also a part of PsbO from Euglena PSII, indicating that PsbO binds to Euglena PSII more loosely than those of other organisms. Treatments by urea/NaCl, alkaline Tris or CaCl2 completely removed the three extrinsic proteins from Euglena PSII. (3) Each of the Euglena extrinsic proteins bound directly to PSII independent of the other extrinsic proteins, which is similar to the binding properties of the extrinsic proteins in a green alga, Chlamydomonas reinhardtii. (4) One of the significant features of Euglena PSII is that the oxygen evolution was not enhanced by Ca2+. When CaCl2-treated Euglena PSII was reconstituted with PsbO, the oxygen-evolving activity was stimulated by the addition of NaCl, but no further stimulation was observed by CaCl2. (5) Oxygen evolution of Euglena PSII reconstituted with PsbO from C. reinhardtii or spinach instead of that from Euglena also showed no enhancement by Ca2+, whereas a significant enhancement of oxygen evolution was observed by Ca2+ when the green algal or higher plant PSII was reconstituted with Euglena PsbO instead of their own PsbO. These results indicate that the PSII intrinsic proteins instead of the extrinsic PsbO protein, are responsible for the stimulation of oxygen evolution by Ca2+. Sequence comparison of major PSII intrinsic proteins revealed that PsbI of Euglena PSII is remarkably different from other organisms in that Euglena PsbI possesses extra 16-17 residues exposed to the luminal side. This may be related to the loss of enhancement of oxygen evolution by Ca2+ ion.  相似文献   

5.
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.  相似文献   

6.
We have previously shown that tobamovirus infection induces an inhibition of photosystem II electron transport, disturbing the oxygen-evolving complex (OEC). In the infected plants, the OEC polypeptide pattern was modified when compared to healthy plants, the levels of the PsbP and PsbQ extrinsic proteins being lowered to different extents. In this work we have further investigated by two-dimensional polyacrylamide gel electrophoresis (2-DE) the changes on the OEC protein pattern of thylakoid membranes isolated from Nicotiana benthamiana Domin plants infected with the Spanish strain of pepper mild mottle virus. When the thylakoid membranes from healthy plants were analyzed for the presence of PsbO and PsbP proteins by 2-DE (pI range 4-7) and further immunoassayed by using specific-antisera against these two proteins, it was observed that four polypeptides cross-reacted with each antiserum. These data, along with the N-terminal amino acid sequence determined for the eight polypeptides, indicate that the N. benthamiana PsbO and PsbP proteins correspond to protein families. In the silver-stained 2-DE gels of thylakoid membranes isolated at different days postinoculation from virus-infected plants, it was observed that the content of PsbP polypeptides decreased dramatically with respect to those of PsbO, during the progress of the infection. Interestingly, there was a differential decrease of the different PsbP proteins, indicative of a distinct regulation of their expression.  相似文献   

7.
8.
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two manganese-stabilizing proteins. Chlorophyll fluorescence induction and decay analyses were performed. Decreasing amounts of expressed protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(v)/F(m)) in both the absence and the presence of dichloromethylurea. This result indicated that the amount of functional photosystem II reaction centers was compromised in the plants that exhibited intermediate and low amounts of the manganese-stabilizing proteins. An analysis of the decay of the variable fluorescence in the presence of dichlorophenyldimethylurea indicated that charge recombination between Q ((A-)) and the S(2) state of the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the manganese stabilizing proteins. This may have indicated a stabilization of the S(2) state in the absence of the extrinsic component. Immunological analysis of the photosystem II protein complement indicated that significant losses of the CP47, CP43, and D1 proteins occurred upon the loss of the manganese-stabilizing proteins. This indicated that these extrinsic proteins were required for photosystem II core assembly/stability. Additionally, although the quantity of the 24-kDa extrinsic protein was only modestly affected by the loss of the manganese-stabilizing proteins, the 17-kDa extrinsic protein dramatically decreased. The control proteins ribulose bisphosphate carboxylase and cytochrome f were not affected by the loss of the manganese-stabilizing proteins; the photosystem I PsaB protein, however, was significantly reduced in the low expressing transgenic plants. Finally, it was determined that the transgenic plants that expressed low amounts of the manganese-stabilizing proteins could not grow photoautotrophically.  相似文献   

9.
Electron microscopy and single-particle analyses have been carried out on negatively stained photosystem II (PSII) complexes isolated from the green alga Chlamydomonas reinhardtii and the thermophilic cyanobacterium Synechococcus elongatus. The analyses have yielded three-dimensional structures at 30-A resolution. Biochemical analysis of the C. reinhardtii particle suggested it to be very similar to the light-harvesting complex II (LHCII).PSII supercomplex of spinach, a conclusion borne out by its three-dimensional structure. Not only was the C. reinhardtii LHCII.PSII supercomplex dimeric and of comparable size and shape to that of spinach, but the structural features for the extrinsic OEC subunits bound to the lumenal surface were also similar thus allowing identification of the PsbO, PsbP, and PsbQ OEC proteins. The particle isolated from S. elongatus was also dimeric and retained its OEC proteins, PsbO, PsbU, and PsbV (cytochrome c(550)), which were again visualized as protrusions on the lumenal surface of the complex. The overall size and shape of the cyanobacterial particle was similar to that of a PSII dimeric core complex isolated from spinach for which higher resolution structural data are known from electron crystallography. By building the higher resolution structural model into the projection maps it has been possible to relate the positioning of the OEC proteins of C. reinhardtii and S. elongatus with the underlying transmembrane helices of other major intrinsic subunits of the core complex, D1, D2, CP47, and CP43 proteins. It is concluded that the PsbO protein is located over the CP47 and D2 side of the reaction center core complex, whereas the PsbP/PsbQ and PsbV/PsbU are positioned over the lumenal surface of the N-terminal region of the D1 protein. However, the mass attributed to PsbV/PsbU seems to bridge across to the PsbO, whereas the PsbP/PsbQ proteins protrude out more from the lumenal surface. Nevertheless, within the resolution and quality of the data, the relative positions of the center of masses for OEC proteins of C. reinhardtii and S. elongatus are similar and consistent with those determined previously for the OEC proteins of spinach.  相似文献   

10.
Roose JL  Yocum CF  Popelkova H 《Biochemistry》2011,50(27):5988-5998
It has been reported previously that the two subunits of PsbO, the photosystem II (PSII) manganese stabilizing protein, have unique functions in relation to the Mn, Ca(2+), and Cl(-) cofactors in eukaryotic PSII [Popelkova; (2008) Biochemistry 47, 12593]. The experiments reported here utilize a set of N-terminal truncation mutants of PsbO, which exhibit altered subunit binding to PSII, to further characterize its role in establishing efficient O(2) evolution activity. The effects of PsbO binding stoichiometry, affinity, and specificity on Q(A)(-) reoxidation kinetics after a single turnover flash, S-state transitions, and O(2) release time have been examined. The data presented here show that weak rebinding of a single PsbO subunit to PsbO-depleted PSII repairs many of the defects in PSII resulting from the removal of the protein, but many of these are not sustainable, as indicated by low steady-state activities of the reconstituted samples [Popelkova; (2003) Biochemistry 42 , 6193]. High affinity binding of PsbO to PSII is required to produce more stable and efficient cycling of the water oxidation reaction. Reconstitution of the second PsbO subunit is needed to further optimize redox reactions on the PSII oxidizing side. Native PsbO and recombinant wild-type PsbO from spinach facilitate PSII redox reactions in a very similar manner, and nonspecific binding of PsbO to PSII has no significance in these reactions.  相似文献   

11.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

12.
We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009).  相似文献   

13.
The oxygen-evolving complex (OEC), which is located on the luminal side of photosystem II, plays an important role in water oxidation. It is generally considered that OEC consists of the Mn4Ca cluster and three extrinsic proteins, PsbO, PsbP, and PsbQ. In this study, we report that a novel rice protein RA68 interacts with PsbO. RA68 is expressed preferentially in seedlings and encodes a novel protein without significant homology with any other proteins. Northern analysis demonstrates that RA68 is a light-regulated gene with a diurnal oscillation pattern under different light conditions. Yeast two-hybrid screening reveals that RA68 interacts with PsbO and PsbP. Further experiments demonstrate that RA68 has specific interaction with PsbO mature protein rather than its precursor form. Moreover, in situ hybridization shows that RA68 and PsbO have similar expression patterns in seedlings.  相似文献   

14.
The extrinsic proteins of photosystem II in plants (PsbO, PsbP and PsbQ) are known to be targets of stress. In previous work, differential regulation of hypothetical isoforms of these proteins was observed in Nicotiana benthamiana upon viral infection. Each of these proteins is encoded by a multigene family in this species: there are at least four genes encoding PsbO and PsbP and two encoding PsbQ. The results of structural and functional analyses suggest that PsbO and PsbP isoforms could show differences in activity, based on significant substitutions in their primary structure. Two psbQ sequences were isolated which encode identical mature proteins.  相似文献   

15.
I Vass  D Kirilovsky  A L Etienne 《Biochemistry》1999,38(39):12786-12794
We studied the effect of UV-B radiation (280-320 nm) on the donor- and acceptor-side components of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803 by measuring the relaxation of flash-induced variable chlorophyll fluorescence. UV-B irradiation increases the t(1/2) of the decay components assigned to reoxidation of Q(A)(-) by Q(B) from 220 to 330 micros in centers which have the Q(B) site occupied, and from 3 to 6 ms in centers with the Q(B) site empty. In contrast, the t(1/2) of the slow component arising from recombination of the Q(A)Q(B)(-) state with the S(2) state of the water-oxidizing complex decreases from 13 to 1-2 s. In the presence of DCMU, fluorescence relaxation in nonirradiated cells is dominated by a 0.5-0.6 s component, which reflects Q(A)(-) recombination with the S(2) state. After UV-B irradiation, this is partially replaced by much faster components (t(1/2) approximately 800-900 micros and 8-10 ms) arising from recombination of Q(A)(-) with stabilized intermediate photosystem II donors, P680(+) and Tyr-Z(+). Measurement of fluorescence relaxation in the presence of different concentrations of DCMU revealed a 4-6-fold increase in the half-inhibitory concentration for electron transfer from Q(A) to Q(B). UV-B irradiation in the presence of DCMU reduces Q(A) in the majority (60%) of centers, but does not enhance the extent of UV-B damage beyond the level seen in the absence of DCMU, when Q(A) is mostly oxidized. Illumination with white light during UV-B treatment retards the inactivation of PSII. However, this ameliorating effect is not observed if de novo protein synthesis is blocked by lincomycin. We conclude that in intact cyanobacterium cells UV-B light impairs electron transfer from the Mn cluster of water oxidation to Tyr-Z(+) and P680(+) in the same way that has been observed in isolated systems. The donor-side damage of PSII is accompanied by a modification of the Q(B) site, which affects the binding of plastoquinone and electron transport inhibitors, but is not related to the presence of Q(A)(-). White light, at the intensity applied for culturing the cells, provides protection against UV-B-induced damage by enhancing protein synthesis-dependent repair of PSII.  相似文献   

16.
The oxygen-evolving complex (OEC) of higher plant photosystem II (PSII) consists of an inorganic Mn4Ca cluster and three nuclear-encoded proteins, PsbO, PsbP and PsbQ. In this review, we focus on the assembly of these OEC proteins, and especially on the role of the small intrinsic PSII proteins and recently found “novel” PSII proteins in the assembly process. The numerous auxiliary functions suggested during the past few years for the OEC proteins will likewise be discussed. For example, besides being a manganese-stabilizing protein, PsbO has been found to bind calcium and GTP and possess a carbonic anhydrase activity. In addition, specific roles have been suggested for the two isoforms of the PsbO protein in Arabidopsis thaliana. PsbP and PsbQ seem to play an additional role in the formation of PSII supercomplexes and in grana stacking, besides their originally recognized role in providing a proper calcium and chloride ion concentration for water splitting.  相似文献   

17.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

18.
Xiaoping Yi 《FEBS letters》2009,583(12):2142-116
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of Photosystem II. A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Earlier we had documented significant alterations in a variety of Photosystem II parameters in these plant lines [Yi, X., Liu, H., Hargett, S. R., Frankel, L. K., Bricker, T. M. (2007). The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J. Biol. Chem. 34, 24833-24841]. In this communication, we document extensive defects in the thylakoid membrane architecture of these plants. Interestingly, strong interfering RNA suppression of the genes encoding the PsbQ protein (At4g21280 and At4g05180) was found to have no effect on the architecture of thylakoid membranes.  相似文献   

19.
Hongmei Gong 《BBA》2008,1777(6):488-495
PSII activity was inhibited after Spirulina platensis cells were incubated with different salt concentrations (0-0.8 M NaCl) for 12 h. Flash-induced fluorescence kinetics showed that in the absence of DCMU, the half time of the fast and slow components decreased while that of the middle component increased considerably with increasing salt concentration. In the presence of DCMU, fluorescence relaxation was dominated by a 0.6s component in control cells. After salt stress, this was partially replaced by a faster new component with half time of 20-50 ms. Thermoluminescence measurements revealed that S2QA and S2QB recombinations were shifted to higher temperatures in parallel and the intensities of the thermoluminescence emissions were significantly reduced in salt-stressed cells. The period-four oscillation of the thermoluminescence B band was highly damped. There were no significant changes in contents of CP47, CP43, cytochrome c550, and D1 proteins. However, content of the PsbO protein in thylakoid fraction decreased but increased significantly in soluble fraction. The results suggest that salt stress leads to a modification of the QB niche at the acceptor side and an increase in the stability of the S2 state at the donor side, which is associated with a dissociation of the PsbO protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号