首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endoproteolytic processing of proproteins in the secretory pathway depends on the expression of selected members of a family of subtilisin-like endoproteases known as the prohormone convertases (PCs). The main PC family members expressed in mammalian neuroendocrine cells are PC2 and PC1/3. The differential processing of proglucagon in pancreatic alpha-cells and intestinal L cells leads to production of distinct hormonal products with opposing physiological effects from the same precursor. Here we describe the establishment and characterization of a novel alpha-cell line (alphaTC-DeltaPC2) derived from PC2 homozygous null animals. The alphaTC-DeltaPC2 cells are shown to be similar to the well characterized alphaTC1-6 cell line in both morphology and overall gene expression. However, the absence of PC2 activity in alphaTC-DeltaPC2 leads to a complete block in the production of mature glucagon. Surprisingly, alphaTC-DeltaPC2 cells are able to efficiently cleave the interdomain site in proglucagon (KR 70-71). Further analysis reveals that alphaTC-DeltaPC2 cells, unlike alphaTC1-6 cells, express low levels of PC1/3 that lead to the generation of glicentin as well as low amounts of oxyntomodulin, GLP-1, truncated GLP-1, and N-terminally extended GLP-2. We conclude that alphaTC-DeltaPC2 cells provide additional evidence for PC2 as the major convertase in alpha-cells leading to mature glucagon production and provide a robust model for further analysis of the mechanisms of proprotein processing by the prohormone convertases.  相似文献   

2.
3.
Recent studies have revealed that the glucagon gene is expressed in the mammalian intestine. Here it codes for "glicentin" (proglucagon 1-69) and a glucagon-like peptide, proglucagon 78-107, recently isolated from porcine intestine. We studied the fate of the remaining COOH-terminal part of proglucagon (proglucagon 111-160) using radioimmunoassays against proglucagon 111-123 and 126-160. Two peptides were isolated from acid ethanol extracts of porcine ileal mucosa and sequenced: one corresponding to proglucagon 126-158 and one probably corresponding to proglucagon 111-158. By comparing human and porcine proglucagon sequences, Ala117 is replaced by Thr, and Ile138, Ala144, Ile152 and Gln153 are replaced by Val, Thr, Leu, and His. By gel filtration and radioimmunoassay of intestinal extracts it was established that a large part of porcine and virtually all of human proglucagon are processed to release proglucagon 111-123 (designated spacer peptide 2), which, like proglucagon 126-158 must be considered a potential hormonal entity. By isocratic high pressure liquid chromatography human spacer peptide 2 was indistinguishable from synthetic proglucagon 111-122 amide, suggesting that this is the structure of the naturally occurring human peptide.  相似文献   

4.
The primary structure of porcine glicentin has been established. The molecule consists of 69 amino acid residues and has a molecular weight of 8128. The sequence of glicentin 1–30 represents the glicentin-related pancreatic peptide (GRPP) previously isolated from porcine pancreas. The sequence 33–61 represents the full sequence of glucagon and the sequence 64–69 is a C-terminal hexapeptide. These three sequences, GRPP, glucagon and the hexapeptide are linked by two Lys-Arg pairs which probably represent the sites for post-synthetic enzymatic cleavages. Glicentin thus fulfils the structural requirements for being proglucagon.  相似文献   

5.
In the small intestine, proglucagon is processed into the previously characterized peptide "glicentin" (proglucagon (PG) 1-69) and two smaller peptides showing about 50% homology with glucagon: glucagon-like peptide-1 and -2. It was assumed that the sites of post-translational cleavage in the small intestine of the proglucagon precursor were determined by pairs of basic amino acid residues flanking the two peptides. Earlier studies have shown that synthetic glucagon-like peptide-1 (GLP-1) synthesized according to the proposed structure (proglucagon 71-108 or because residue 108 is Gly, 72-107 amide) had no physiological effects, whereas a truncated from of GLP-1, corresponding to proglucagon 78-107 amide, strongly stimulated insulin secretion and depressed glucagon secretion. To determine the amino acid sequence of the naturally occurring peptide we isolated GLP-1 from human small intestine by hydrophobic, gel permeation, and reverse-phase high performance liquid chromatography. By analysis of composition and sequence it was determined that the peptide corresponded to PG 78-107. By mass spectrometry the molecular mass was determined to be 3295, corresponding to PG 78-107 amide. Furthermore, mass spectrometry of the methyl-esterified peptide showed an increase in mass compatible with the presence of alpha-carboxyl amidation. Thus, the gut-derived insulinotrophic hormone GLP-1 is shown to be PG 78-107 amide.  相似文献   

6.
Mice homozygous for a deletion in the gene encoding prohormone convertase 2 (PC2) are generally healthy but have mild hypoglycemia and flat glucose-tolerance curves. Their islets show marked alpha (A)-cell hyperplasia, suggesting a possible defect in glucagon processing (Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., and Steiner, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 6646-6651). In this report we have examined the biosynthesis and processing of proglucagon in isolated islets from these mice via pulse-chase labeling and find that proglucagon undergoes essentially no processing in chase periods up to 8 h in duration. Only a small percent of cleavage at the sensitive interdomain site (residues 71 and 72) appears to occur. These observations thus conclusively demonstrate the essentiality of PC2 for the production of glucagon in the islet A-cells. Ultrastructural and immunocytochemical studies indicate the presence of large amounts of proglucagon in atypical appearing secretory granules in the hyperplastic and hypertrophic A-cells, along with morphological evidence of high rates of proglucagon secretion in PC2 null islets. These findings provide strong evidence that active glucagon is required to maintain normal blood glucose levels, counterbalancing the action of insulin at all times.  相似文献   

7.
Oxyntomodulin (OXM) and glicentin, two peptides processed from proglucagon, both contain the glucagon sequence and a C-terminal basic octapeptide, KRNRNNIA extension. A method to produce antibodies, directed specifically toward the C-terminal extension of these two peptides, was developed; it consisted of the use of thioled bovine serum albumin conjugated with the synthetic N-maleoyl C-terminal octapeptide as the immunogen. Three rabbits (FAN, LEG, and PIP) generated antisera with affinity constants close to 5 X 10(10) M-1. In the radioimmunoassay system, these antisera showed a 100% cross-reactivity with OXM, partially purified rat and human glicentin, and the C-terminal 19-37 OXM fragment. They displayed no cross-reactivity toward the glucagon molecule. The cross-reactivity of C-terminal fragments of OXM demonstrated that the epitope involves the C-terminal hexapeptide and that the two last amino acid residues are essential for the binding. The high-performance liquid chromatography elution profiles of human jejunum or rat intestinal extracts obtained by radioimmunoassay with LEG antiserum showed two major peaks which had the same retention times as OXM and glicentin markers. Thus, the major end products in the human and rat small intestine are OXM and glicentin. In human or rat pancreas, the two main peaks detected were glucagon and the C-terminal hexapeptide of OXM/glicentin. Small amounts of OXM were also found in pancreas, whereas no significant quantities of glicentin could be detected. The "thiol-maleoyl" coupling method described here, and applied to produce C-terminal OXM/glicentin specific antisera, might be of general use to obtain antibodies against a well-defined epitope.  相似文献   

8.
Proglucagon is expressed in pancreatic α cells, intestinal L cells, and some hypothalamic and brainstem neurons. Tissue-specific processing of proglucagon yields three major peptide hormones as follows: glucagon in the α cells and glucagon-like peptides (GLP)-1 and -2 in the L cells and neurons. Efficient sorting and packaging into the secretory granules of the regulated secretory pathway in each cell type are required for nutrient-regulated secretion of these proglucagon-derived peptides. Our previous work suggested that proglucagon is directed into granules by intrinsic sorting signals after initial processing to glicentin and major proglucagon fragment (McGirr, R., Guizzetti, L., and Dhanvantari, S. (2013) J. Endocrinol. 217, 229–240), leading to the hypothesis that sorting signals may be present in multiple domains. In the present study, we show that the α-helices within glucagon and GLP-1, but not GLP-2, act as sorting signals by efficiently directing a heterologous secretory protein to the regulated secretory pathway. Biophysical characterization of these peptides revealed that glucagon and GLP-1 each encode a nonamphipathic, dipolar α-helix, whereas the helix in GLP-2 is not dipolar. Surprisingly, glicentin and major proglucagon fragment were sorted with different efficiencies, thus providing evidence that proglucagon is first sorted to granules prior to processing. In contrast to many other prohormones in which sorting is directed by ordered prodomains, the sorting determinants of proglucagon lie within the ordered hormone domains of glucagon and GLP-1, illustrating that each prohormone has its own sorting “signature.”  相似文献   

9.
Using a radioimmunoassay specific for porcine glicentin C-terminal hexapeptide, we isolated a peptide from porcine pancreas and characterized it as the C-terminal 64-69 sequence of glicentin: H-Asn-Lys-Asn-Asn-Ile-Ala-OH. The purification steps included gel filtration, ion-exchange chromatography and HPLC. In each step, the recovery of the desired peptide, radioimmunologically estimated from the respective elution profile, was 71.4-91.7%. The final yield of the hexapeptide was 22 micrograms (4.3%) from 800 g pancreas. The pancreatic content of this peptide was estimated to be approximately equimolar to that of pancreatic glucagon. No hexapeptide-like component was detected in porcine intestinal extracts. The data confirmed that the processing of pancreatic proglucagon liberates the C-terminal hexapeptide of the intramolecular glicentin sequence in a tissue-specific manner during the production of glucagon.  相似文献   

10.
Lamprey proglucagon and the origin of glucagon-like peptides.   总被引:3,自引:0,他引:3  
We characterized two proglucagon cDNAs from the intestine of the sea lamprey Petromyzon marinus. As in other vertebrates, sea lamprey proglucagon genes encode three glucagon-like sequences, glucagon, and glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). This observation indicates that all three glucagon-like sequences encoded by the proglucagon gene originated prior to the divergence of jawed and jawless vertebrates. Estimates of the rates of evolution for the glucagon-like sequences suggest that glucagon originated first, about 1 billion years ago, while GLP-1 and GLP-2 diverged from each other about 700 MYA. The two sea lamprey intestinal proglucagon cDNAs have differing coding potential. Proglucagon I cDNA encodes the previously characterized glucagon and the glucagon-like peptide GLP-1, while proglucagon II cDNA encodes a predicted GLP-2 and, possibly, a glucagon. The existence of two proglucagon cDNAs which differ with regard to their potential to encode glucagon-like peptides suggests that the lamprey may use differential gene expression as a third mechanism, in addition to alternative proteolytic processing and mRNA splicing, to regulate the production of proglucagon-derived peptides.  相似文献   

11.
The mammalian proglucagon gene is expressed in pancreatic islet A-cells, intestinal L-cells, and select neurons of the brain, where posttranslational processing results in the liberation of a unique profile of peptides. Despite the importance of proglucagon-derived peptides in human biology, little is known about the regulation of the human gene, as the rat gene has been the preferred model for understanding the regulation of proglucagon gene expression. Previously, we have shown that although the immediate promoter region of the rat proglucagon gene is sufficient for expression in pancreatic islet cells, the homologous human proglucagon promoter sequences are not sufficient. We have now used a comparative genomic approach to identify noncoding sequences near the human proglucagon gene that are conserved among mammals, and thus potentially are regulatory sequences. Our alignments identified three evolutionarily conserved noncoding regions (ECR), one is the immediate promoter region (ECR1), the second is about 5 kb 5' to the mRNA start site (ECR2), and the third is near the 3' end of the first intron (ECR3). Our in vitro transient transfection assays with reporter gene constructs that include the human ECR3 support expression in rodent islet cell lines. Complementary studies with transgenic mice possessing a reporter gene regulated by a human proglucagon gene promoter-intron 1 (including ECR3) sequences express the reporter gene in the pancreas, as well as the intestine and selected neurons. These studies suggest that conserved sequences within intron 1 of the human proglucagon gene are important for expression in the pancreas.  相似文献   

12.
Molecular evolution of proglucagon   总被引:2,自引:0,他引:2  
The vertebrate proglucagon gene encodes glucagon, and the two glucagon-like peptides GLP-1 and GLP-2. To better understand the origin and diversification of the distinct hormonal roles of the three glucagon-like sequences encoded by the proglucagon gene, we have examined the evolution of this gene. The structure of proglucagon has been largely maintained within vertebrates. Duplication of the proglucagon gene or duplications of sequences within the proglucagon gene are rare. All proglucagon gene duplications are likely to be the result of genome duplication events. Examination of the rates of amino acid sequence evolution of each hormone reveals that they have not evolved in a uniform manner. Each hormone has evolved in an episodic fashion, suggesting that the selective constraints acting upon the sequence vary between, and within, vertebrate classes. Changes in selection on a sequence often reflect changes in the function of the sequence, such as the change in function of GLP-1 from a glucagon-like hormone in fish to an incretin in mammals. We found that the GLP-2 sequence underwent rapid sequence evolution in the early mammal lineage, therefore we have concluded that mammalian GLP-2 has acquired a new biological function that is not found in other vertebrates. Comparisons of the hormone sequences show that many amino acid residues that are functionally important in mammalian hormones are not conserved through vertebrate evolution. This observation suggests that the sequences involved in hormone action change through evolution.  相似文献   

13.
14.
15.
16.
17.
18.
Glucagon/PP-related peptides were detected immunohistochemically in 18 out of 22 cases of rectal tumors investigated. The reactive tumors showed prevalence of trabecular or mixed trabecular-acinar structure and moderate staining with Grimelius' silver and lead-hematoxylin. Three of the remaining 4 cases were characterized by reactivity for 5-hydroxytryptamine only, prevalence of a solid nest structural component and intense staining with Grimelius' silver technique and lead-hematoxylin. Fifteen of the 18 glucagon/PP-reactive cases were investigated immunohistochemically with a series of 6 sera directed against different sequences of glucagon, glicentin and proglucagon, and of 7 sera directed against PP, PYY and proPP-icosapeptide. A large spectrum of glucagon-related immunoreactivities, including C-terminus and mid-portion glucagon-immunoreactivity, N- and C-terminus glicentin-immunoreactivity, GLP1- and GLP2-immunoreactivity, were detected in human rectal L cells and most rectal carcinoids. With the exception of a few scattered cells in the rectal mucosa and in 3 tumors, C-terminus glucagon-immunoreactivity was obtained only after trypsin or subtilisin treatment of tissue sections. Both PYY and PP/proPP-like peptide(s) were detected in rectal L cells and carcinoids, with prevalence of PYY in normal cells and PP/proPP-like peptides in tumor cells. It is concluded that the same or closely related hormone/prohormone sequences are synthesized and stored in rectal endocrine cells and carcinoid tumors although differences of quantitative expression, post-translational cleavage or reactivity to antibodies may occur. The usefulness of protease treatments of tissue sections to unmask immunoreactivities of uncleaved propeptides or fixative-denatured peptides is outlined.  相似文献   

19.
Human dermcidin, an anionic antimicrobial peptide expressed in the pons of the brain and the sweat glands, displays antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus and Candida albicans. Here, we describe the recombinant production of a 48 amino acid dermcidin variant with C-terminal homoserine lactone (DCD-1Hsl). Dermcidin coding sequence was cloned downstream of a 125 amino acid ketosteroid isomerase gene and upstream of a His6Tag sequence in pET-31b(+) vector and transformed into Escherichia coli. The fusion protein was expressed in the form of inclusion bodies, purified on His Bind Resin, and cleaved by CNBr to release recombinant DCD-1Hsl. Purification of rDCD-1Hsl was achieved by solid-phase extraction that yielded milligram amounts of peptide with more than 95% purity. Recombinant peptide showed antimicrobial activities against E. coli ML-35p, Salmonella typhimurium 5156, Listeria monocytogenes 264, S. aureus 29/58 (clinical isolate), and C. albicans K2 (clinical strain). The application of this expression/purification approach represents a fast and efficient method to prepare milligram quantities of dermcidin in its biologically active form.  相似文献   

20.
We purified the extracellular domain (ECD) of the human calcium receptor (hCaR) from the medium of HEK-293 cells stably transfected with a hCaR cDNA containing an isoleucine 599 nonsense mutation. A combination of lectin, anion exchange, and gel permeation chromatography yielded milligram quantities of >95% pure protein from 15 liters of starting culture medium. The purified ECD ran as an approximately 78-kDa protein on SDS-polyacrylamide gel electrophoresis and was found to be a disulfide-linked dimer. Its NH2-terminal sequence, carbohydrate content, and CD spectrum were defined. Tryptic proteolysis studies showed two major sites accessible to cleavage. These studies provide new insights into the structure of the hCaR ECD. Availability of purified ECD protein should permit further structural studies to help define the mechanism of Ca2+ activation of this G protein-coupled receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号