首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At hatching (252–264 hr. at 25 ± 0.5°C), the visual system in larvae of Lytta viridana consists of paired stemmata, stemmatal nerves, optic neuropiles, and inner and outer imaginal optic lobe anlagen. It originates between 64 and 72 hr. with invagination of an optic lobe primordium in the side of each protocephalic lobe. These primordia later differentiate into protocerebral ganglion cells and the imaginal optic lobe anlagen. Each stemma arises at 72 hr. from epidermis below and behind the optic lobe invagination and subsequently becomes cupshaped, closes over, and differentiates. At hatching, it consists of a planoconvex corneal lens, a corneagenous layer, and an everse retina of numerous, pigmented retinular cells, each with a terminal rhabdomere. Between 96 and 104 hr, proximal ends of the retinular cells grow posteromedially into a transverse, horizontal fold in the posterior wall of each optic lobe invagination and along its length to the protocerebral neuropile, which they contact by 112 hr. As the brain withdraws posteriorly within the head, these axons elongate correspondingly. Sheath cells of stemmata and stemmatal nerves descend either from protocerebral perineurium or the optic lobe primordia. Structure and development of the larval visual system in L. viridana are compared with those of other insects and its various components are shown to be homologous throughout the Insecta. However, the stemmata of this insect more closely resemble the atypical imaginal eyes of male scale insects than the photoreceptors of other holometabolous larvae–a similarity arising through convergence.  相似文献   

2.
Ultrastructure of stemmata (larval eyes), stemmatal nerves, and the optic neuropils of 5th-instar larvae of cotton bollworm, Heliothis armigera (Hübner) (Lepidoptera : Noctuidae), were examined with scanning and transmission electron microscopes. Six stemmata are on each side of the head. Each stemma consists of 7 retinula cells arranged into 2 tiers. Stemmata I and II have 4 distal retinula cells and 3 proximal cells, the other 4 stemmata (III–IV) have 3 distal cells and 4 proximal cells. Stemmata I and IV have a short proximal rhabdom and the rhabdomere of each proximal cell has its microvilli projecting in only one direction. On the other hand, each stemma (in stemmata II–V) has a long proximal rhabdom and the rhabdomere of each proximal cell has microvilli pitched in several different directions relative to the horizontal plane. An axon projects proximally from each retinula cell body. The stemmatal nerve is composed of the 42 retinular axons from all of the 6 stemmata on the same side of the head. Each stemmatal nerve projects to the ipsilateral optic neuropil. Axons from each stemma are in a fasicle (within the stemmatal nerve), which consists of 7 axons, 3–4 of them are thick and terminate synaptically in the proximal neuropil; the others are thinner and terminate in the distal neuropil. Organelles, particularly lysosomes, undergo ultrastructural transformations relative to ambient light levels. The functional significance of abovementioned structures are discussed in light of current knowledge.  相似文献   

3.
Summary Retained larval eyes (stemmata) were studied in the imagines of three species of Trichoptera: Phrygania grandis, Agrypnia varia, and Trichostegia minor. At the light-microscopic level the stemmata of all three species appeared to represent different stages of reduction with respect to size, shape and number of lenses. However, in all three species electron-microscopic studies showed units with monolayered rhabdoms, each formed by four retinula cells. By use of immunocytochemistry the presence of S-antigen was demonstrated in the retinula cells and their axons. This method also revealed the central projections of the axons of the retinula cells, which were found (i) to terminate either in the lamina accessoria or (ii) to penetrate this area to join the fibers of the outer chiasma of the optic lobes and then terminate in the medulla accessoria. The lamina accessoria and the medulla accessoria are the assumed remnants of the larval optic lobes. It is suggested that the imaginal stemmata might still be functioning photoreceptors.  相似文献   

4.
Adult stemmata are distinctive insect photoreceptors located on the posterior surfaces of the optic lobes. They originate as larval eyes that migrate inward during metamorphosis. We used a combination of light microscopy and in situ hybridization to examine their anatomical organization in the butterfly Vanessa cardui and to test for the presence of visual pigments, the light sensitive components of the visual transduction pathway. The bilateral cluster of six internal stemmata is located near the ventral edge of the lamina. They retain the dark screening pigment and overlying crystalline cones of the larval stemmata. We found two opsin mRNAs expressed in the stemmata that are also expressed, respectively, in UV-sensitive and green-sensitive photoreceptor cells in the compound eye. A third mRNA that is expressed in blue-sensitive photoreceptor cells of the compound eye was not expressed in the stemmata. Our results reinforce the idea that the adult stemmata are not merely developmental remnants of larval eyes, but remain functional, possibly as components of the circadian input channel.This work was supported by grants from the National Science Foundation to A.D.B. (IBN-0346765) and R.H.W (IBN-9874493).  相似文献   

5.
The visual system of the larval tiger beetle (Cicindela chinensis) consists of six (two large, two mediumsized, and two small) stemmata on either side of the head, and an underlying neuropil mass. Each stemma exhibits a corneal lens and an underlying rhabdom layer. Retinular cells extend single proximal axons into the neuropil mass. The neuropil mass has a flattened heart-shape, and consists of two juxtaposed identical structures, each being a neuropil complex of each of the two large stemmata. The complex consists of lamina and medulla neuropils. Most retinular axons terminate in the lamina neuropil. Axons of two types of lamina monopolar neurons descend parallel to each other into the lamina neuropil. Moreover, each lamina neuropil contains a single giant monopolar neuron. Possible centrifugal processes and tangential neurons also occur. Lamina monopolar axons descend straight into the medulla neuropil. Medulla neurons spread fan-shaped dendrites distally in the medulla neuropil and send single axons toward the protocerebrum. These data are discussed with respecct to the unique visual behavior of this larva and in comparison with other insect visual systems.  相似文献   

6.
1.  The larva of the tiger beetle (Cicindela chinensis) possesses six stemmata on either side of the head. Optical and physiological properties of two pairs of large stemmata and a pair of anterior medium sized stemmata, and responses of second-order visual interneurons (medulla neurons) have been examined.
2.  Objects at infinite distance were estimated to focus 50 m deep in the retina in the large stemmata. Receptive fields of four large stemmata, the acceptance angle of each being 90°, largely overlapped one another.
3.  The stemmata possessed a single type of retinular cell with a maximal spectral sensitivity at 525 nm, and a flicker fusion frequency of 25–50 Hz.
4.  Medulla neurons expanded fan-shaped dendrites in the medulla neuropil, and their axons extended into the protocerebrum. They responded to illumination with a variety of discharge patterns. They also responded with spike discharges to moving objects and to apparent movements provided by sequential illumination or extinction of LEDs. They did not show directional selectivity. They possessed well-defined receptive fields ranging from 30° to 105°.
  相似文献   

7.
The external and internal features of the larval head of Rhyacophila fasciata (Trichoptera: Rhyacophilidae) were described in detail. Anatomical examinations were carried out using a multimethod approach including histology, scanning electron microscopy, confocal laser‐scanning microscopy, microcomputed tomography, and computer‐based three‐dimensional reconstructions. Additionally, the information on the larval head of Limnephilus flavicornis (Limnephilidae) and Hydropsyche angustipennis (Hydropsychidae) available in the literature were reinvestigated. These anatomical data were used to address major questions of homology and terminology, that is, the ventral closure of the head capsule, the sclerites, and appendages of labium and maxilla and their muscles. These topics were discussed by summarizing the main hypotheses present in the literature and a critical inclusion of new findings. Consequently, the inner lobe of the maxilla very likely represents the galea. The distal maxillary sclerite (palpifer) is an anatomical composite formation at least including dististipes and lacinia. Based on these homology hypotheses several potential groundplan features of the larval head of Trichoptera were reconstructed. The head of Rhyacophila shows several presumably plesiomorphic features as for instance the prognath orientation of the mouthparts, the well‐developed hypocranial bridge, the triangular submentum and eyes composed of seven stemmata. Derived features of Rhyacophila are the reduced antennae, the anterior directing of three stemmata and the shift of the tentorio‐stipital muscle to the mentum. J. Morphol. 276:1505–1524, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Nearly nothing is known about the transition that visual brain regions undergo during metamorphosis, except for Drosophila in which larval eyes and the underlying neural structure are strongly reduced. We have studied the larvae of the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), which are sophisticated visually oriented predators characterized by six elaborate stemmata on each side of the head and an associated large optic lobe. We used general neurohistological staining and 3D reconstruction to determine how the eyes and optic lobe of T. marmoratus change morphologically during metamorphosis. We find that in third (last) instar larvae, the adult neuropils are already forming de novo dorsally and slightly anteriorly to the larval neuropils, while the latter rapidly degenerate. Larval eyes are eventually reduced to distinct areas with dark pigmentation. This complete reorganization, which may be an evolutionarily conserved trait in holometabolous insects, occurs despite the considerable costs that must apply to such a visually complex animal. Our findings are consistent with the concept that stemmata are homologous to the most posterior ommatidia of hemimetabolous insects, an idea also recently supported by molecular data.  相似文献   

9.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

10.
Abstract. The larval head of Agathiphaga vitiensis is described. There is a complete hypostomal bridge but no hypostomal ridges. Adfrontal ridges and distinct ecdysial lines are absent. There are two vestigial stemmata (without lenses) on each side. The antenna is one-segmented. All ‘typical lepidopteran’ head setae have been identified. The corporotentorium is very slender; dorsal tentorial arms are present. Intrinsic labral muscles are lacking. The mandible has retained a tentorial muscle. The maxilla is without a discrete cardo and has but a single endite lobe; ‘intrinsic maxillary muscles’ and the ‘cranial flexor of the dististipes’ are lacking. The postlabium is undivided and without setae, the labial palp is one-segmented and the lateral prelabio-hypopharyngeal sclerotization is continued into an oral arm. Some of the ventral pharyngeal dilators arise on the tentorium; mouth-angle retractors and dorsal post-cerebral pharynx dilators are absent. The two brain lobes have almost parallel long axes and are united by a narrow (almost pure neuropile) bridge. The corpora cardiaca and callata are contiguous. The aorta is an open gutter in front of the retrocerebral complex. Available evidence on the ground plan structure of the lepidopteran larval head is reviewed. The ancestral head supposedly was prognathous and was autapomorphic in having the cranio-cardinal articulation far behind the mandible; it had a complete hypostomal bridge but neither hypostomal nor adfrontal ridges, its tentorium was probably stout and with dorsal arms. Paulus & Schmid (1978, Z. zool. Syst. EvolForsch. 16) described a lepidopteran/trichopteran synapomorphy in stemma structure. A tentative table of homologies between cranial setae in Lepidoptera and Trichoptera is presented; it differs considerably from the scheme of Williams & Wiggins (1981, Proc. 3rd Symp. Trichopt.). The mouth parts and their musculature must have been overall very primitive for a panorpid larva, but the number of maxillary palp segments was reduced (three). The ‘dististipes’sensu Hinton is considered to consist of complexly fused parts of the stipes and basal palp segments. The cephalic stomodaeum must have possessed all primitive groups of extrinsic muscles. The incomplete available information on Micropterigidae impedes reconstruction of some details of the lepidopteran ground plan. Larval head structures support the monophyly of an entity comprising the Agathiphagidae + Heterobathmiidae + Glossata. There is one suite of derived characters shared by Heterobathmiidae and Agathiphagidae only and another shared by Heterobathmiidae and the Glossata only; one of these must represent parallelisms.  相似文献   

11.
Lepidopterans display biological rhythms associated with egg laying, eclosion and flight activity but the photoreceptors that mediate these behavioural patterns are largely unknown. To further our progress in identifying candidate light-input channels for the lepidopteran circadian system, we have developed polyclonal antibodies against ultraviolet (UV)-, blue- and extraretinal long-wavelength (LW)-sensitive opsins and examined opsin immunoreactivity in the adult optic lobes of four hawkmoths, Manduca sexta, Acherontia atropos, Agrius convolvuli and Hippotion celerio. Outside the retina, UV and blue opsin protein expression is restricted to the adult stemmata, with no apparent expression elsewhere in the brain. Melatonin, which is known to have a seasonal influence on reproduction and behaviour, is expressed with opsins in adult stemmata together with visual arrestin and chaoptin. By contrast, the LW opsin protein is not expressed in the retina or stemmata but rather exhibits a distinct and widespread distribution in dorsal and ventral neurons of the optic lobes. The lamina, medulla, lobula and lobula plate, accessory medulla and adjacent neurons innervating this structure also exhibit strong LW opsin immunoreactivity. Together with the adult stemmata, these neurons appear to be functional photoreceptors, as visual arrestin, chaoptin and melatonin are also co-expressed with LW opsin. These findings are the first to suggest a role for three spectrally distinct classes of opsin in the extraretinal detection of changes in ambient light and to show melatonin-mediated neuroendocrine output in the entrainment of sphingid moth circadian and/or photoperiodic rhythms.This work was partially supported by the Canadian Institute for Advanced Research (A.D.B.) and the National Science Foundation (grant nos. IBN-0082700 and IBN-0346765; A.D.B.).  相似文献   

12.
13.
Six neural elements, viz., retinular axons, a giant monopolar axon, straight descending processes (type I), lamina monopolar axons (type II), processes containing clusters of dense-core vesicles (type III), and processes coursing in various directions with varicosities (type IV), have been identified at the ultrastructural level in the lamina neuropil of the larval tiger beetle Cicindela chinensis. Retinular axons make presynaptic contact with all other types of processes. Type I and II processes possess many pre-and postsynaptic loci. Type II processes presumably constitute retinotopic afferent pathways. It remains uncertain whether type I processes are lamina monopolar axons or long retinular axons extending to the medullar neuropil. Type III processes may be efferent neurons or branches of afferent neurons contributing to local circuits. A giant monopolar axon extends many branches throughout the lamina neuropil; these branches are postsynaptic to retinular axons, and may be nonretinotopic and afferent. Type IV processes course obliquely in the neuropil, being postsynaptic to retinular axons, and presynaptic to type I processes.  相似文献   

14.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

15.
During metamorphosis, the dioptric apparatus of the larval compound eye of Chaoborus crystallinus (Diptera : Nematocera) is radically reconstructed. The thin larval cornea of the ommatidia is replaced by strongly curved corneal lenses, and the eucone larval cone is replaced by an imaginal cone of the acone type. Curvature of the future lens is already apparent in very young pupae, in which the cornea consists only of a thin epicuticle with corneal nipples. Fibrillary cuticle is secreted by cone and primary pigment cells throughout pupal development. Lens formation is accompanied by movement of the nuclei of the accessory pigment cells. The larval cone disintegrates unexpectedly late in young, images. During late pupal development, 7 cone cell projections emerge. In contrast to the dioptric apparatus, the retinula cells and rhabdom remain almost unchanged during metamorphosis. The main refractive element of the larval ommatidium appears to be the cone, while that of the imaginal ommatidium is the corneal lens. In addition to the compound eyes, the pairs of stemmata are retained during the whole post-larval development. Pupal stemmata show no structural differences from the larval stemmata. The stemmata are still present in 2-day-old images (“retained stemmata”), but the primary stemma loses its dioptric apparatus and is proximally relocated to the basal region of the compound eye. The reconstructions in the visual system of Chaoborus, which occur during ontogeny, are probably connected with the change from aquatic living larvae to aerial adults, and appear to fulfill stage-specific needs of vision.  相似文献   

16.
According to molecular sequence data Crustacea and not Myriapoda seem to be the sister‐group to Insecta. This makes it necessary to reconsider how the morphology of their eyes fit with these new cladograms. Homology of facetted eye structures in Insecta (Hexapoda in the sense of Ento‐ and Ectognatha) and Crustacea is clearly supported by identical numbers of cells in an ommatidium (two corneageneous or primary pigment cells, four Semper cells which build the crystalline cone and primarily eight retinula cells). These cell numbers are retained even when great functional modification occurs, especially in the region of the dioptric apparatus. There are two different possibilities to explain differences in eye structure in Myriapoda depending on their phylogenetic position in the cladogram of Mandibulata. In the traditional Tracheata cladogram, eyes of Myriapoda must be secondarily modified. This modification can be explained using the different evolutionary pathways of insect facetted eyes to insect larval eyes (stemmata) as an analogous model system. Comparative morphology of larval insect eyes from all holometabolan orders shows that there are several evolutionary pathways which have led to different types of stemmata and that the process always involved the breaking up the compound eye into individual larval ommatidia. Further evolution led on many occasions to so‐called fusion‐stemmata that occur convergently in each holometabolic order and reveals, in part, great structural similarities to the lateral ocelli of myriapods. As myriapodan eyes cannot be regarded as typical mandibulate ommatidia, their structure can be explained as a modified complex eye evolved in a comparable way to the development to the fusion‐stemmata of insect larvae. The facetted eyes of Scutigera (Myriapoda, Chilopoda) must be considered as secondarily reorganized lateral myriapodan stemmata, the so‐called ‘pseudo‐compound eyes’. New is a crystalline cone‐like vitreous body within the dioptric apparatus. In the new cladogram with Crustacea and Insecta as sister‐groups however, the facetted eyes of Scutigera can be interpreted as an old precursor of the Crustacea – Insecta facetted eye with modified ommatidia having a four‐part crystalline cone, etc. as a synapomorphy. Lateral ocelli of all the other Myriapoda are then modified like insect stemmata. The precursor is then the Scutigera‐Ommatidium. In addition further interpretations of evolutionary pathways of myriapodan morphological characters are discussed.  相似文献   

17.
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo‐ and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Immunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light‐ and ultrastructural investigations in well‐defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.

…Clearly more work will be necessary before truly informed judgements can be made about the functional significance of the diversity in photoreception for entrainment. A first step will be the precise identification of photoreceptors and investigations of the mechanisms of transduction, processing and transmission of temporal information provided by the daily light cycle.…” ()  相似文献   

18.
External and internal head structures of larval representatives of Raphidiidae are described. The obtained data were compared to characters of other neuropterid larvae and to larval characters of representatives of other endopterygote lineages. Characters potentially relevant for phylogenetic reconstruction are listed and discussed. The larvae of Raphidioptera differ distinctly from other neuropterid larvae in their morphology. They are mainly characterised by autapomorphic and plesiomorphic character states and few features indicate systematic affinities with other groups. Endopterygote groundplan features maintained in Raphidioptera are the complete tentorium, the free labrum, the full set of labral muscles, the presence of four extrinsic antennal muscles, the three-segmented labial palpi, the presence of a full set of extrinsic maxillary and labial muscles, the presence of a salivarium, and possibly the high number of stemmata. Apomorphies likely correlated with predaceous habits are the long gula, the protracted maxillae, the longitudinal arrangement of extrinsic maxillary muscles, and the elongated prepharyngeal tube. Highly unusual, potentially autapomorphic features are the presence of a dorsal ligament of the tentorium and paired gland-like structures below the pharynx. A prognathous or very slightly inclined head and slender mandibles without mola are features shared by larvae of all orders of Neuropterida. The parallel-sided head is a potential synapomorphy of Raphidioptera and Megaloptera. A fully prognathous head with anteriorly shifted posterior tentorial grooves and the presence of a parietal ridge and a distinct neck region are features shared with Corydalidae. Characters of the larval head are not sufficient for a reliable placement of Raphidioptera.  相似文献   

19.
The retinae of the compound eyes of several species of Pipunculidae (Diptera : Cyclorrhapha), belonging to the subfamilies Chalarinae and Pipunculinae, were investigated in semithin sections in both sexes of the representative species. Whereas the boundary of the dorsal and ventral retinular cells in a mirror-image configuration is at the equator in the male, in the female it is situated in the anterior region of the eye at the level of the upper frons, and is located above the equator only in the lateral region. In the frontal view, it constitutes a concave arch to frontofacial region. The facets of the corneal lenses are strikingly enlarged in the anterior region of the eyes, compared with those in the remainder of the eye in the female. This area with the large-faceted ommatidia, was determined in more detail in total views as well as in histological preparations and compared with the eye of the male. In the frontal region, the mirror-image boundary in the retina of the female coincides exactly with the boundary between the large-faceted central and small-faceted peripheral ommatidia.By examining the dichoptic eyes of the Chalarus male, it has been demonstrated that the arcuate mirror-image boundary in the retinae of females is not associated with their dichoptic eye position. This is an example of sexual dimorphism. The retinal pattern of the female described in this paper was not found in other 37 families of the flies investigated till now. This new type of the retina of the suborder Brachycera (including Cyclorrhapha) is to be subsumed under the synapomorphic ground plans of the Pipunculidae. At the same time, it proves to be an autapomorphic characteristic of the family.  相似文献   

20.
A number of invertebrates are known to be sensitive to the polarization of light and use this trait in orientation, communication, or prey detection. In these animals polarization sensitivity tends to originate in rhabdomeric photoreceptors that are more or less uniformly straight and parallel. Typically, polarization sensitivity is based on paired sets of photoreceptors with orthogonal orientation of their rhabdomeres. Sunburst diving beetle larvae are active swimmers and highly visual hunters which could potentially profit from polarization sensitivity. These larvae, like those of most Dytiscids, have a cluster of six lens eyes or stemmata (designated E1 through E6) on each side of the head capsule. We examined the ultrastructure of the photoreceptor cells of the principal eyes (E1 and E2) of first instar larvae to determine whether their rhabdomeric organization could support polarization sensitivity. A detailed electron microscopical study shows that the proximal retinas of E1 and E2 are in fact composed of photoreceptors with predominantly parallel microvilli and that neighboring rhabdomeres are oriented approximately perpendicularly to one another. A similar organization is observed in the medial retina of E1, but not in the distal retinas of E1&2. Our findings suggest that T. marmoratus larvae might be able to analyze polarized light. If so, this could be used by freshly hatched larvae to find water or within the water to break the camouflage of common prey items such as mosquito larvae. Physiological and behavioral tests are planned to determine whether larvae of T. marmoratus can actually detect and exploit polarization signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号