首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism.  相似文献   

2.
We reported here the clinical and molecular characterization of a Chinese subject with childhood-onset hearing impairment. Clinical evaluations showed that the patient suffered from profound and non-syndromic sensorineural hearing loss with flat configurations. Sequence analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes led to the identification of double deafness-associated mutations of A1555G and T1095C in the 12S rRNA gene which apparently in the homoplasmic forms. In additional, there was no other functionally significant nucleotide variants found in this subject. As previous studies have indicated that the A1555G mutation was a primary contributing factor underlying the development of deafness but not sufficient to produce clinical phenotype, the co-segregation of two mitochondrial DNA mutations raises the possibility that the T to C transition at position 1095 plays a role in the phenotypic expression of deafness-associated A1555G mutation. Actually, the T1095C mutation disrupted an evolutionarily conserved base-pair at stem-loop of helix 25 of 12S rRNA, resulting in impaired translation in mitochondrial protein synthesis and a significant reduction of cytochrome c oxidase activity. As a result, it may enhance the biochemical defect in patient carrying the A1555G mutation, thus changing the age of onset and the severity of hearing impairment.  相似文献   

3.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

4.
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss.This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of hearing impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced heating loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TψC-loop of tRNAGlu and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNAalu A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated AI555G mutation in this Chinese pedigree.  相似文献   

5.
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss. This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of heating impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced heating loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TψC-loop of tRNA^Clu and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNA^Glu A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated A1555G mutation in this Chinese pedigree.  相似文献   

6.
The A1555G mutation in the mitochondrial small ribosomal RNA gene (12S rRNA) has been associated with aminoglycoside-induced, nonsyndromic hearing loss. However, the clinical phenotype of A1555G carriers is extremely variable. In the present study, we have performed an audiological evaluation of a group of deaf patients and hearing carriers of mutation A1555G with the aim to assess the prevalence of the mutation and determine the associated cochlear alterations. Fifty-four patients affected of nonsyndromic hearing loss were screened for the presence of the A1555G mitochondrial mutation. Nine of the familial cases (21%) carried the A1555G mutation, whereas the mutation was not found in any of the sporadic cases. The positive cases and some of their family members underwent a clinical study consisting in a clinical evaluation and audiological testing. The phenotype of A1555G patients varied in age of onset and severity of hearing loss, ranging from profound deafness to completely normal hearing. The audiometric alterations showed bilateral hearing loss, being more severe at high frequencies. Otoacoustic emissions were absent in deaf A1555G carriers, and auditory brainstem response indicated a prolonged Wave I, suggesting a cochlear dysfunction without any effect of the auditory nerve. Moreover, all hearing carriers of A1555G also presented alterations in cochlear physiology. In conclusion, the A1555G mitochondrial mutation causes a cochlear form of deafness, characterized by a more severe loss of hearing at high frequencies. Although the expression of the mutation is variable, cochlear alterations are present in all carriers of mutation A1555G.  相似文献   

7.

BACKGROUND:

Mutations of mitochondrial DNA were described into two genes: The mitochondrially encoded 12S RNA (MT-RNR1) and the mitochondrially encoded tRNA serineucn (MT-TS1). The A1555G mutation in MT-RNR1 gene is a frequent cause of deafness in different countries.

AIM:

The aim of this work was to investigate the frequency of the A1555G mutation in the MT-RNR1 gene in the mitochondrial DNA in Brazilians individuals with nonsyndromic deafness, and listeners.

MATERIALS AND METHODS:

DNA samples were submitted to polymerase chain reaction and to posterior digestion with the Hae III enzyme.

RESULTS:

Seventy eight (78) DNA samples of deaf individuals were analyzed; 75 showed normality in the region investigated, two samples (2.5%) showed the T1291C substitution, which is not related to the cause of deafness, and one sample (1.3%) showed the A1555G mutation. Among the 70 non-impaired individuals no A1555G mutation or T1291C substitution was found.

CONCLUSION:

We can affirm that A1555G mutation is not prevalent, or it must be very rare in normal-hearing subjects in the State of Paraná, the south region of Brazil. The A1555G mutation frequency (1.3%) found in individual with nonsyndromic deafness is similar to those found in other populations, with nonsyndromic deafness. Consequently, it should be examined in deafness diagnosis. The investigation of the A1555G mutation can contribute towards the determination of the nonsyndromic deafness etiology, hence, contributing to the correct genetic counseling process.  相似文献   

8.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   

9.
We report here the characterization of a large Chinese family with maternally transmitted aminoglycoside-induced and nonsyndromic deafness. In the absence of aminoglycosides, some matrilineal relatives in this family exhibited late-onset/progressive deafness, with a wide range of severity and age at onset. Notably, the average age at onset of deafness has changed from 55 years (generation II) to 10 years (generation IV). Clinical data reveal that the administration of aminoglycosides can induce or worsen deafness in matrilineal relatives. The age at the time of drug administration appears to be correlated with the severity of hearing loss experienced by affected individuals. Sequence analysis of mitochondrial DNA in this pedigree identified a homoplasmic C-to-T transition at position 1494 (C1494T) in the 12S rRNA gene. The C1494T mutation is expected to form a novel U1494-1555A base pair, which is in the same position as the C1494-1555G pair created by the deafness-associated A1555G mutation, at the highly conserved A site of 12S rRNA. Exposure to a high concentration of paromomycin or neomycin caused a variable but significant average increase in doubling time in lymphoblastoid cell lines derived from four symptomatic and two asymptomatic individuals in this family carrying the C1494T mutation when compared to four control cell lines. Furthermore, a significant decrease in the rate of total oxygen consumption was observed in the mutant cell lines. Thus, our data strongly support the idea that the A site of mitochondrial 12S rRNA is the primary target for aminoglycoside-induced deafness. These results also strongly suggest that the nuclear background plays a role in the aminoglycoside ototoxicity and in the development of the deafness phenotype associated with the C1494T mutation in the mitochondrial 12S rRNA gene.  相似文献   

10.
Mutations in mitochondrial DNA (mtDNA), particularly those in the 12S rRNA gene, have been shown to be associated with sensorineural hearing loss. Here we report the clinical and sequence analysis of the entire mitochondrial genome in three Chinese subjects with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation showed a variable phenotype of hearing impairment including the age of onset and audiometric configuration in these subjects. Sequence analysis of the complete mitochondrial genomes in three subjects showed the distinct sets of mtDNA polymorphism, in addition to the identical mitochondrial 12S rRNA T1095C mutation. This mutation was previously identified to be associated with hearing impairment in three families from different genetic backgrounds. The T1095C mutation was absent in 364 Chinese control. In fact, the occurrence of the T1095C mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. Among other nucleotide changes, the A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 exhibited a high evolutionary conservation. These data suggest that the T1095C mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairments and A2238G and T2885C mutations in the 16S rRNA, the I175V mutation in the CO2, the F16L mutation in the A6 and the V112M mutation in the ND6 may contribute to the phenotypic expression of the T1095C mutation in these subjects.  相似文献   

11.
Guan MX 《Mitochondrion》2011,11(2):237-245
The mitochondrial 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic 1555A>G and 1494C>T mutations at the highly conserved decoding region of the 12S rRNA have been associated with hearing loss worldwide. In particular, these two mutations account for a significant number of cases of aminoglycoside ototoxicity. The 1555A>G or 1494C>T mutation is expected to form a novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the human mitochondrial ribosomes more bacteria-like and alter binding sites for aminoglycosides. As a result, the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying one of these mutations. Biochemical characterization demonstrated an impairment of mitochondrial protein synthesis and subsequent defects in respiration in cells carrying the A1555G or 1494C>T mutation. Furthermore, a wide range of severity, age-at-onset and penetrance of hearing loss was observed within and among families carrying these mutations. Nuclear modifier genes, mitochondrial haplotypes and aminoglycosides should modulate the phenotypic manifestation of the 12S rRNA 1555A>G and 1494C>T mutations. Therefore, these data provide valuable information and technology: (1) to predict which individuals are at risk for ototoxicity; (2) to improve the safety of aminoglycoside antibiotic therapy; and (3) eventually to decrease the incidence of hearing loss.  相似文献   

12.
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-generation Chinese family with a high penetrance of LHON (78.6%). Analysis of the complete mitochondrial genome in the proband revealed the presence of the LHON primary mutation G11778A in the NADH dehydrogenase 4 (ND4) gene and a deafness-associated mutation A1555G in the 12S rRNA gene. The other mtDNA variants in this family suggested a haplogroup status G2b. Although A1555G has long been confirmed to be a primary mutation for aminoglycoside-induced and non-syndromic hearing loss, none of the maternally related members in this family showed hearing impairment. It thus seems that the occurrence of A1555G in this family had no pathological manifestation. However, whether A1555G has a synergistic effect with G11778A and contribute to the high penetrance of LHON remained an open question. To our knowledge, this is the first report that identified the co-existence of a deafness mutation A1555G and a primary LHON mutation G11778A in one family.  相似文献   

13.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

14.
In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat-shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity.  相似文献   

15.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.  相似文献   

16.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here a systematic mutational screening of the mitochondrial 12S rRNA gene in 128 Chinese pediatric subjects with sporadic aminoglycoside-induced and non-syndromic hearing loss. We show that aminoglycoside ototoxicity accounts for 48% of cases of hearing loss in this Chinese pediatric population. Of the known deafness-associated mutations in this gene, the incidence of the A1555G mutation is ~13% and ~2.9% in this Chinese pediatric population with aminoglycoside-induced and non-syndromic hearing loss, respectively. Furthermore, mutations at position 961 in the 12S rRNA gene account for ~1.7% and 4.4% of cases of aminoglycoside-induced and non-syndromic hearing loss in this Chinese clinical population, respectively. The T1095C mutation has been identified in one maternally inherited family with aminoglycoside-induced and non-syndromic hearing loss. However, the C1494T mutation was not detected in this clinical population. In addition, three variants, A827G, T1005C and A1116G, in the 12S rRNA gene, localized at highly conserved sites, may play a role in the pathogenesis of aminoglycoside ototoxicity. These data strongly suggest that the mitochondrial 12S rRNA is a hot-spot for deafness-associated mutations in the Chinese population.Z. Li and R. Li contributed equally to this work.  相似文献   

17.
Maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require additional environmental or genetic changes for phenotypic expression. Aminoglycosides have been identified as one such environmental factor. In one large Arab-Israeli pedigree with congenital hearing loss in some of the family members with the A1555G mutation and with no exposure to aminoglycosides, biochemical evidence has suggested the role of nuclear modifier gene(s), but a genomewide search has indicated the absence of a single major locus having such an effect. Thus it has been concluded that the penetrance of the mitochondrial mutation appears to depend on additive effects of several nuclear genes. We have now investigated 10 multiplex Spanish and Italian families with 35 members with the A1555G mutation and sensorineural deafness. Parametric analysis of a genomewide screen again failed to identify significant evidence for linkage to a single autosomal locus. However, nonparametric analysis supported the role of the chromosomal region around marker D8S277. The combined maximized allele-sharing LOD score of 3.1 in Arab-Israeli/Spanish/Italian families represents a highly suggestive linkage result. We suggest that this region should be considered a candidate for containing the first human nuclear modifier gene for a mitochondrial DNA disorder. The locus operates in Arab-Israeli, Spanish, and Italian families, resulting in the deafness phenotype on a background of the mitochondrial A1555G mutation. No obvious candidate genes are located in this region.  相似文献   

18.
We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.  相似文献   

19.
Over the last decade, a number of distinct mutations in the mtDNA (mitochondrial DNA) have been found to be associated with both syndromic and non-syndromic forms of hearing impairment. Their real incidence as a cause of deafness is poorly understood and generally underestimated. Among the known mtDNA mutations, the A1555G mutation in the 12S gene has been identified to be one of the most common genetic cause of deafness, and it has been described to be both associated to non-syndromic progressive SNHL (sensorineural hearing loss) and to aminoglycoside-induced SNHL. In the present study, we have investigated the presence of mtDNA alterations in patients affected by idiopathic non-syndromic SNHL, both familiar and sporadic, in order to evaluate the frequency of mtDNA alterations as a cause of deafness and to describe the audiological manifestations of mitochondrial non-syndromic SNHL. In agreement with previous studies, we found the A1555G mutation to be responsible for a relevant percentage (5.4%) of cases affected with isolated idiopathic sensorineural hearing impairment.  相似文献   

20.
一个母系遗传非综合征耳聋大家系mtDNA序列分析   总被引:7,自引:4,他引:3  
通过分析本家mtDNA序列,探讨淮阴一非综合耳聋大家患病的分子遗传学机制。采用聚合酶链反应(PCR)扩增mtDNA与非综合征耳聋相关位点nt1555,nt7445的区域和人类种群研究的D-loop区,PCR-异源双链分析,PCR-RFLP、PCR产物克隆序列测定等技术对该家系进行了系统的研究。发现该家系中全部母系亲属有mtDNAA1555G突变,而家系中非母 个体,对照组(100例正常个体)的mtDNA1555位点均为A。该家系mtDNA7445位点无突变;该系属于Ⅱ型线性体;发现家系D-loop区存在未见报道的碱基插入。提示mtDNAA1555G位点突变可能是导致该家系患致聋的主要因素之一。遗传背景可能对家系疾病的表现存在一定程度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号