首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state measurements of synthetic substrate hydrolysis by human alpha-thrombin in the presence of human fibrinogen, under experimental conditions where light scattering due to the formation of fibrin aggregates is negligible, have allowed for a quantitative evaluation of Km for fibrinogen. Measurements of Km for fibrinogen carried out at pH 7.5 and 37 degrees C as a function of NaCl, NaBr, KCl, and KBr concentration, from 50 to 500 mM, show that the derivative d ln Km/d ln a +/-, where a +/- is the mean ion activity, is constant over the entire range of salt concentrations and is strictly dependent on the particular salt present in solution. The values of d ln Km/d ln a +/- are found to be equal to 0.75 +/- 0.03 (NaCl), 0.90 +/- 0.01 (NaBr), 0.62 +/- 0.07 (KCl), and 0.60 +/- 0.03 (KBr). Measurements of Km for two synthetic amide substrates, under identical solution conditions, reveal practically no change in Km with salt concentration, while they show a significant decrease in kcat when Na+ salts are replaced by K+ salts. The drastic difference in the salt dependence of Km between fibrinogen and the synthetic amide substrate points out that a significant role may be played by the fibrinogen recognition site in the energetics of thrombin-fibrinogen interaction. The sensitivity of Km for fibrinogen to different salts unequivocally demonstrates that specific ion effects, rather than nonspecific ionic strength effects, modulate thrombin-fibrinogen interaction under experimental conditions of physiological relevance. Analysis of ion effects on clotting curves obtained at pH 7.5 and 37 degrees C also shows a drastic differential effect of cations and anions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Unsulfated N alpha-acetyl-hirudin45-65 (MDL 27 589), which corresponds to the C-terminus of hirudin1-65, was synthesized by solid-phase methods. The synthetic peptide was able to inhibit fibrin formation and the release of fibrinopeptide A from fibrinogen by thrombin. The catalytic site of thrombin was not perturbed by the synthetic peptide as H-D-Phe-Pip-Arg-pNA hydrolysis (amidase activity) was not affected. The binding of synthetic peptide and thrombin was assessed by isolation of the complex on gel-filtration chromatography. A single binding site with a binding affinity (Ka) of approx. 1.0 X 10(5) M-1 was observed for thrombin-hirudin45-65 interaction. The data suggest that the C-terminal residues 45-65 of hirudin contain a binding domain which recognizes thrombin and yet does not bind to the catalytic site of the enzyme.  相似文献   

3.
Basis for the reduced affinity of beta T- and gamma T-thrombin for hirudin   总被引:1,自引:0,他引:1  
S R Stone  J Hofsteenge 《Biochemistry》1991,30(16):3950-3955
Partial proteolysis of human alpha-thrombin by trypsin results in the formation of beta T-thrombin and gamma T-thrombin which have a reduced affinity for the inhibitor hirudin and the cell-surface cofactor thrombomodulin as well as reduced activity with fibrinogen. The basis of the reduction in affinity of these thrombin derivatives for hirudin has been investigated by examining their kinetics of interaction with a number of hirudin mutants differing in their C-terminal charge properties as well as with a truncated form of hirudin. The results indicate that the reduced affinity of beta T-thrombin for hirudin is most likely due to a decrease in the strength of nonionic interactions between thrombin and the C-terminal region of hirudin. No decrease in the strength of ionic interactions was observed with beta T-thrombin. In contrast, the reduced affinity of gamma T-thrombin was due to a decrease in the strength of both ionic and nonionic interactions. The N-terminal core region of hirudin, which interacts predominantly with the active-site cleft of thrombin, exhibited similar affinities for alpha-, beta T-, and gamma T-thrombin, indicating that thrombin-hirudin interactions within the active site are largely preserved in beta T- and gamma T-thrombin.  相似文献   

4.
The kinetic mechanism of the inhibition of alpha-thrombin by hirudin was analyzed using the hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Previously, these fragments have been shown to interact with alpha-thrombin at distinct sites inhibiting thrombin-mediated clot formation. Binding to the active site the N-terminal fragment hirudin(1-47) competitively inhibits hydrolysis of the substrates Tos-Gly-Pro-Arg-NH-Mec (Tos, tosyl; NH-Mec, 4-methylcoumaryl-7-amide) and fibrinogen with Ki values of 420 +/- 18 nM and 460 +/- 25 nM, respectively. Interacting with the anion-binding site of alpha-thrombin the C-terminal fragment competitively inhibits the hydrolysis of fibrinogen with a Ki of 760 +/- 40 nM. It was found, however, that this fragment acts as a hyperbolic uncompetitive inhibitor with respect to the hydrolysis of the peptide-NH-Mec substrate. According to the Botts-Morales scheme for enzyme inhibition, the parameters Ki = 710 +/- 38 nM, K'i = 348 +/- 22 nM, as well as alpha = beta = 0.49 of thrombin inhibition by the C-terminal fragment hirudin(45-65), were obtained. The results are discussed in terms of the interaction of hirudin and thrombin.  相似文献   

5.
Highly purified hirudin with a specific activity of 13,950 antithrombin units/mg was isolated from a commercial preparation by reversed-phase chromatography. The circular dichroism (CD) spectrum of hirudin was investigated and it was found that the spectrum cannot be accounted for solely in terms of the traditional three components of peptide backbone. It was also found that the CD spectrum of the thrombin-hirudin complex was not additive with respect to the individual spectra of thrombin and hirudin. This deviation from additivity was significant between 210 and 225 nm, indicating alterations in the secondary structures of the proteins during complex formation. When thrombin was titrated with hirudin, the spectral deviation from additivity was sigmoidal, suggesting the cooperative nature of the binding process. Gel filtration of the thrombin-hirudin mixture showed no molecular species greater than a 1:1 complex (Mr 45,500), but gel filtration of free hirudin showed a multimeric form (Mr 51,300) under the same experimental conditions. It is concluded that the cooperative nature of the binding process is due to the binding of thrombin molecules to the multimeric form of hirudin. This initial binding occurs with little or no change in the CD spectrum. In the second step, the multiple complex dissociates to form 1:1 complexes, resulting in larger conformational changes and a considerable increase in binding affinity.  相似文献   

6.
Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme.  相似文献   

7.
Effect of heparin on the interaction between thrombin and hirudin   总被引:2,自引:0,他引:2  
The effect of heparin on the interaction between thrombin and hirudin has been examined by kinetic methods. Three forms of heparin fractionated on the basis of their affinity for antithrombin III and unfractionated heparin were found to act as noncompetitive inhibitors of the formation of the thrombin-hirudin complex. A three--four fold increase in the dissociation constant of the complex was observed at saturating heparin concentrations. This increase in the dissociation constant was due to a twofold decrease in the rate of association of thrombin and hirudin together with a similar increase in the rate of dissociation of the complex. Implications for the location of the heparin binding site on thrombin and the possible therapeutic use of the hirudin are discussed.  相似文献   

8.
A potent thrombin inhibitor, [D-Phe45, Arg47] hirudin 45-65, that contains an active site-directed sequence D-Phe-Pro-Arg-Pro, an exosite specific fragment hirudin 55-65 (H55-65) and a linker portion hirudin 49-54, was designed based on the hirudin sequence [DiMaio et al. (1990) J. Biol. Chem., 265, 21698-21798]. A three-dimensional model of the complex between the B-chain of human thrombin and the inhibitor [D-Phe45, Arg47] hirudin 45-65 was constructed using molecular modelling starting from the X-ray C alpha coordinates of the thrombin-hirudin complex and the NMR-derived structure of the thrombin-bound hirudin 55-65. The contribution of the H49-54 fragment to the thrombin-inhibitor interaction was deduced by examining a series of analogs containing single glycine substitution and analogs with reduced number of residues within the linker. The results were consistent with the molecular modelling observations i.e. the H49-54 fragment serves the role of a spacer in the binding interaction and could be replaced by four glycine residues. The studies on the interaction of the exosite-directed portion of the inhibitor with thrombin using a series of synthetic H55-65 analogs demonstrated that residues AspH55 to ProH60 play a major role in binding to human thrombin where the side chains of PheH56, IleH59 and GluH57 showed critical contributions. Molecular modelling suggested that these side chains may contribute to inter- and intramolecular hydrophobic and electrostatic interactions, respectively.  相似文献   

9.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(19):4557-4562
Site-specific substitutions of the first five amino acids of the thrombin inhibitor hirudin have been made and the effects of these substitutions on the kinetics of formation of the thrombin-hirudin complex evaluated. The effects of different substitutions of Val1 indicate that nonpolar interactions play a major role in the binding of this residue. In the second position (Val2), polar amino acids were better accommodated than in the first. The mutant with arginine in the second position bound particularly well to thrombin; its dissociation constant was 9-fold lower than that of wild-type recombinant hirudin. Comparison of the effects of single and double mutations involving Val1 and Val2 indicates that there was no cooperativity in the binding of these two residues. Elimination of the hydrophobic interactions made by the aromatic ring of Tyr3 of hirudin resulted in a large loss of binding energy (12.7 kJ mol-1). Replacement of Thr4 of hirudin by serine and alanine suggested that both the gamma-methyl and the hydroxyl group of the threonine were important in the stabilization of the thrombin-hirudin complex. Replacement of Asp5 of hirudin by alanine and glutamate caused about the same loss in binding energy (5 kJ mol-1). The effects of site-specific substitutions are discussed in terms of the crystal structure of the thrombin-hirudin complex. Molecular modeling provided plausible explanations for many of the observed effects. For instance, such studies suggested that the improved binding of the mutant with arginine in the second position could be due to an interaction of the arginine with the primary specificity pocket.  相似文献   

10.
Amino acid substitutions within the amino-terminal 5 residues of the thrombin-specific inhibitor hirudin dramatically alter its ability to inhibit the thrombin-catalyzed hydrolysis of both a chromogenic substrate and fibrinogen. Replacing the highly conserved Tyr-3 residue with Trp or Phe increases hirudin's affinity for thrombin 3-6-fold (decreases the inhibition constant, Ki) whereas Thr results in a 450-fold increase in Ki. A more extensive modification involving deletion of the amino-terminal Val, and Tyr-3----Val, Thr-4----Gln, and Asp-5----Ile replacement, results in a large reduction in thrombin inhibitory activity corresponding to greater than a 10(7)-fold increase in Ki and a 10(3)-fold increase in IC50, using D-Phe-L-pipecolyl-Arg-p-nitroanilide (S-2238) and fibrinogen, respectively, as substrates. Kinetic analysis of these mutant proteins and synthetic peptide fragments and available structural information on thrombin and hirudin derived from protein crystallography and two-dimensional NMR studies indicate that the amino-terminal region of hirudin binds at the apolar binding/active site region of thrombin, with Tyr-3 occupying the S3 specificity site. The large effect of these modifications on hirudin activity suggests that alteration of the amino-terminal segment can destabilize the interaction of other regions of hirudin with thrombin.  相似文献   

11.
The time course of the precipitin reactions of concanavalin A with glycogen, dextran and ovalbumin was investigated by a light-scattering method near 30 degrees C in 10 mM-Tris/HCl buffer, pH 7.4, containing neutral salts, i.e. NaCl, KCl, NaBr, KI and NaClO4. With 0.8 microM-lectin and 0.36 mg of glycogen/ml, the half-life, t 1/2, of the precipitin reaction was independent of salt concentration between 0.1 M and 1.5 M, and was the same (175s) in the presence of NaCl, KCl, NaBr and KI but was significantly (27%) higher in NaClO4. In contrast, the five salts caused significant to marked enhancement in t 1/2 for the reactions of concanavalin A with dextran and ovalbumin. Likewise, whereas the turbidity produced in 1 h as a result of lectin-glycogen precipitation remained unchanged, those measured for the binding of dextran and ovalbumin were decreased in the presence of three salts. The increase in t 1/2 and decrease in turbidity were found to be higher with NaClO4, followed by KI; NaBr produced moderate and NaCl (or KCl) small but generally significant inhibition of the precipitin reactions with dextran and ovalbumin. The results showed that the lectin-ligand precipitin reactions involve salt-sensitive polar interactions that are less pronounced with compactly folded ligands such as glycogen.  相似文献   

12.
The role of electrostatic interactions in stabilization of the thrombin-hirudin complex has been investigated by means of two macroscopic approaches: the modified Tanford-Kirkwood model and the finite-difference method for numerical solution of the Poisson-Boltzmann equations. The electrostatic potentials around the thrombin and hirudin molecules were asymmetric and complementary, and it is suggested that these fields influence the initial orientation in the process of the complex formation. The change of the electrostatic binding energy due to mutation of acidic residues in hirudin has been calculated and compared with experimentally determined changes in binding energy. In general, the change in electrostatic binding energy for a particular mutation calculated by the modified Tanford-Kirkwood approach agreed well with the experimentally observed change. The finite-difference approach tended to overestimate changes in binding energy when the mutated residues were involved in short-range electrostatic interactions. Decreases in binding energy caused by mutations of amino acids that do not make any direct ionic interactions (e.g., Glu 61 and Glu 62 of hirudin) can be explained in terms of the interaction of these charges with the positive electrostatic potential of thrombin. Differences between the calculated and observed changes in binding energy are discussed in terms of the crystal structure of the thrombin-hirudin complex.  相似文献   

13.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

14.
The lysate of the glycogen-induced macrophages in rat peritoneal exudate was fractionated by centrifugation and extraction into a water extract, 1 M KCl extract and residue fractions. Approximately 50% of the neutral protease activity toward casein in the lysate was recovered in the KCl extract fraction, which was practically devoid of acid protease, cathepsin D. The pH optimum of the neutral protease toward casein and urea-denatured hemoglobin was pH 8.5. The activity was inhibited strongly by DFP or chymostatin and only partially by HgCl2 or PCMB. Addition of a salt to the reaction medium caused enhancement of the activity with an optimum concentration of 0.25 M: KCl, KBr, KI, NaCl, NaBr, NaI, and MgCl2 were all almost equally effective. When the enzyme preparation was filtered through a column of Sephadex G-75 gel in the presence of 1 M KCl, a larger molecular weight fraction at the void volume was obtained in addition to a smaller molecular weight fraction showing a caseinolytic activity insensitive to KCl concentration. The former was found to have a specific inhibitory effect on the latter activity.  相似文献   

15.
Hirudin, isolated from the European leech Hirudo medicinalis, is a potent inhibitor of thrombin, forming an almost irreversible thrombin-hirudin complex. Previously, we have shown that the carboxyl terminus of hirudin (residues 45-65) inhibits clotting activity and without binding to the catalytic site of thrombin. In the present study, a series of peptides corresponding to this carboxyl-terminal region of hirudin have been synthesized, and their anticoagulant activity and binding properties to thrombin were examined. Binding was assessed by their ability to displace 125I-hirudin 45-65 from Sepharose-immobilized thrombin and by isolation of peptide-thrombin complexes. We show that the carboxyl-terminal 10 amino acid residues 56-65 (Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-Gln) are minimally required for binding to thrombin and inhibition of clotting. Phe-56 was critical for maintaining anticoagulant activity as demonstrated by the loss of activity when Phe-56 was substituted with D-Phe, Glu, or Leu. In addition, we found that the binding of the carboxyl-terminal peptide of hirudin with thrombin was associated with a significant conformational change of thrombin as judged by circular dichroism. This conformational change might be responsible for the loss of clotting activity of thrombin.  相似文献   

16.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

17.
Inhibition of thrombin by synthetic hirudin peptides   总被引:1,自引:0,他引:1  
To investigate the role of different regions of hirudin in the interaction with the proteinase thrombin, segments of hirudin containing 15-51 residues were synthesized. The C-terminal segment 40-65 inhibited the fibrinogen clotting activity of thrombin but not amidolysis of tosyl-Gly-Pro-Arg-p-nitroanilide. Central peptide 15–42 was insoluble at pH 7, but peptide 15-65 inhibited fibrinogen clotting and amidolysis to an equal extent. The N-terminal loop peptide 1-15 had no inhibitory activity and did not affect the potency of peptide 15-65. These data suggest that the central region inhibits catalysis.  相似文献   

18.
Previous results indicate extensive similarity of the active site regions of thrombin (EC 3.4.21.5) and Thrombin Quick, a congenital dysthrombin. A binding defect of Thrombin Quick toward fibrinogen is indicated by an increased KI when fibrinogen is present as a competitive inhibitor in the hydrolysis of tosyl-Gly-Pro-Arg-p-nitroanilide. In the present study, Thrombin Quick I is shown to have an activity of 1.3 and 34%, respectively, toward fibrinogen and prothrombin. Like the activity observed in prothrombin hydrolysis, Thrombin Quick I was 30% as effective as thrombin in stimulating release of thromboxane from platelets. Thrombin Quick was 1.7 and 2.4%, as effective as thrombin in stimulating platelet aggregation and prostacyclin production, respectively. Based on the activity of Thrombin Quick I in the reactions investigated, it is concluded that 1) the three cellular responses studied are initiated by proteolytic action of thrombin, 2) thrombin stimulation of aggregation and thromboxane release from platelets occurs via two different receptors, 3) the thrombin cellular interaction resulting in platelet aggregation and prostacyclin release must involve the thrombin active site as well as a secondary binding site required for optimal interaction with fibrinogen, and 4) the release of thromboxane from platelets does not involve the interaction of thrombin at the extrinsic binding site.  相似文献   

19.
Interactions which determine the rate of conversion of fibrinogen into monomer fibrin and the retention of monomer fibrin in a noncompactible form through interaction with residual fibrinogen (solution stabilization) were examined through the kinetics of formation of equilibrium compactible network at pH 7 and ionic strength 0.15. For studies of conversion, reactions with thrombin were at 29 or 2 °C, hirudin was added at successive times to inhibit thrombin, and compactible network was equilibrated at 2 °C, where solution stabilization is negligible. A substrate dependency of initial rate is interpreted on the basis of inactive complex formation between thrombin and both fibrinogen and monomer fibrin. At 29 or 2 °C specific rate constants are 32 or 2.9 × 106 liter/mol, and association constants for inactive complex formation are 5.2 or 2.0 × 105 liter/mol. The second peptide-A is removed from fibrinogen ~ 40-fold as rapidly as the first.With equilibration at 29 °C, compactible network does not appear until the solution stabilization ratio of residual fibrinogen/monomer fibrin is four. Thereafter, increasing amounts of compactible network appear. However, the stabilization ratio progressively decreases to approximately two, a situation which indicates the complexity of the stabilization mechanism.The thrombin-hirudin association constant is estimated to be 4.9 or 17 × 1011 liter/mol at 29 or 2 °C.  相似文献   

20.
Six lysyl residues of human thrombin (LysB21, LysB52, LysB65, LysB106, LysB107 and LysB154) have been previously shown to participate in the binding site of hirudin, a thrombin-specific inhibitor [(1989) J. Biol. Chem. 264, 7141-7146]. In this report, we attempted to delineate the region of hirudin which binds to these basic amino acids of thrombin. Using the N-terminal core domains (r-Hir1-43 and r-Hir1-52) derived from recombinant hirudins and synthetic C-terminal peptides (Hir40-65 and Hir52-65)--all fragments form complexes with thrombin--we are able to demonstrate that the structural elements of hirudin which account for the shielding of these 6 lysyl residues are exclusively located within the acidic C-terminal region. Since hirudin C-terminal peptides were shown to bind to a non-catalytic site of thrombin and inhibit its interaction with fibrinogen [(1987) FEBS Lett. 211, 10-16], our data consequently imply that these 6 lysyl residues are constituents of the fibrinogen recognition site of thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号