首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial velocity and product inhibition studies were conducted with the glutamine-dependent reaction of asparagine synthetase from mouse pancreas. Double reciprocal plots of glutamine versus either aspartate or ATP were parallel, while aspartate versus ATP gave intersecting patterns. These patterns are indicative of a hybrid ping-pong mechanism consisting of a glutaminase partial reaction and a sequential catalysis involving aspartate and ATP. Inhibition patterns of the four products, glutamate, AMP, PPi, and asparagine, versus each of the three substrates are consistent with a hybrid Uni Uni Bi Ter Ping Pong Theorell-Chance mechanism where the glutaminase reaction occurs first and aspartate binds to the enzyme before ATP in the sequential segment. PPi is the first product released in the Theorell-Chance reaction, which is followed by the ordered release of AMP and asparagine. Product inhibition patterns also indicate the formation of E . NH3 . Asn and E . NH3 . Asp . AMP abortive complexes. Although an amide site (for glutamine and asparagine), presumably responsible for the glutaminase reaction, an acid site (for glutamate and aspartate), and a nucleotide site are involved in the overall catalysis, the "two-site" ping-pong mechanism is incompatible with the experimentally observed product inhibition patterns.  相似文献   

2.
The kinetic mechanism of bovine pancreatic asparagine synthetase was deduced from initial velocity studies and product inhibition studies of both the glutamine-dependent and ammonia-dependent reactions. For the glutamine-dependent pathway, parallel lines were observed in the double reciprocal plot of 1/V vs. 1/[glutamine] at varied aspartate concentrations, and in the plot of 1/V vs. 1/[ATP] at varied aspartate concentrations. Intersecting lines were found for the plot of 1/V vs. 1/[ATP] at varied glutamine concentrations. Product inhibition patterns, including dual inhibitor studies for measuring the synergistic effects of multiproduct inhibition, were used to support an ordered bi-uni-uni-ter ping-pong mechanism. Glutamine and ATP sequentially bind, followed by the release of glutamate and the addition of aspartate. Pyrophosphate, AMP, and asparagine are then sequentially released. When the ammonia-dependent reaction was studied, it was found that the mechanism was significantly different. NH3 bound first followed by a random addition of ATP and aspartate. Pyrophosphate, AMP, and asparagine were then sequentially released as in the glutamine-utilizing mechanism. From these studies, a comprehensive mechanism has been proposed through which either glutamine or NH3 can provide nitrogen for asparagine production from aspartate.  相似文献   

3.
The kinetic mechanism of asparagine synthetase from rat liver has been studied. The mechanism of the reaction in the presence of high concentrations of total Mg2+ (50 mM) was suggested to be a uni-uni-bi-ter ping-pong-type without abortive complexes; glutamine binds first followed by glutamate release, and aspartate and ATP bind in order followed by ordered release of PPi, AMP, and asparagine. But, it is indicated that in the presence of 0.5-2.0 mM excess Mg2+ over ATP the binding of substrates after the release of glutamate is in a rapid equilibrium system such as ordered Mg2+ and random aspartate-MgATP. Mg2+ was demonstrated to have two roles in the catalysis; to modify the enzyme and to form a complex of MgATP.  相似文献   

4.
Asparagine synthetase B (AsnB) catalyzes the formation of asparagine in an ATP-dependent reaction using glutamine or ammonia as a nitrogen source. To obtain a better understanding of the catalytic mechanism of this enzyme, we report the cloning, expression, and kinetic analysis of the glutamine- and ammonia-dependent activities of AsnB from Vibrio cholerae. Initial velocity, product inhibition, and dead-end inhibition studies were utilized in the construction of a model for the kinetic mechanism of the ammonia- and glutamine-dependent activities. The reaction sequence begins with the ordered addition of ATP and aspartate. Pyrophosphate is released, followed by the addition of ammonia and the release of asparagine and AMP. Glutamine is simultaneously hydrolyzed at a second site and the ammonia intermediate diffuses through an interdomain protein tunnel from the site of production to the site of utilization. The data were also consistent with the dead-end binding of asparagine to the glutamine binding site and PP(i) with free enzyme. The rate of hydrolysis of glutamine is largely independent of the activation of aspartate and thus the reaction rates at the two active sites are essentially uncoupled from one another.  相似文献   

5.
Carbapenam synthetase (CarA) is an ATP/Mg2+-dependent enzyme that catalyzes formation of the beta-lactam ring in (5R)-carbapenem-3-carboxylic acid biosynthesis. CarA is homologous to beta-lactam synthetase (beta-LS), which is involved in clavulanic acid biosynthesis. The catalytic cycles of CarA and beta-LS mediate substrate adenylation followed by beta-lactamization via a tetrahedral intermediate or transition state. Another member of this family of ATP/Mg2+-dependent enzymes, asparagine synthetase (AS-B), catalyzes intermolecular, rather than intramolecular, amide bond formation in asparagine biosynthesis. The crystal structures of apo-CarA and CarA complexed with the substrate (2S,5S)-5-carboxymethylproline (CMPr), ATP analog alpha,beta-methyleneadenosine 5'-triphosphate (AMP-CPP), and a single Mg2+ ion have been determined. CarA forms a tetramer. Each monomer resembles beta-LS and AS-B in overall fold, but key differences are observed. The N-terminal domain lacks the glutaminase active site found in AS-B, and an extended loop region not observed in beta-LS or AS-B is present. Comparison of the C-terminal synthetase active site to that in beta-LS reveals that the ATP binding site is highly conserved. By contrast, variations in the substrate binding pocket reflect the different substrates of the two enzymes. The Mg2+ coordination is also different. Several key residues in the active site are conserved between CarA and beta-LS, supporting proposed roles in beta-lactam formation. These data provide further insight into the structures of this class of enzymes and suggest that CarA might be a versatile target for protein engineering experiments aimed at developing improved production methods and new carbapenem antibiotics.  相似文献   

6.
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.  相似文献   

7.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

8.
We isolated pleiotropic mutants of Klebsiella aerogenes with the transposon Tn5 which were unable to utilize a variety of poor sources of nitrogen. The mutation responsible was shown to be in the asnB gene, one of two genes coding for an asparagine synthetase. Mutations in both asnA and asnB were necessary to produce an asparagine requirement. Assays which could distinguish the two asparagine synthetase activities were developed in strains missing a high-affinity asparaginase. The asnA and asnB genes coded for ammonia-dependent and glutamine-dependent asparagine synthetases, respectively. Asparagine repressed both enzymes. When growth was nitrogen limited, the level of the ammonia-dependent enzyme was low and that of the glutamine-dependent enzyme was high. The reverse was true in a nitrogen-rich (ammonia-containing) medium. Furthermore, mutations in the glnG protein, a regulatory component of the nitrogen assimilatory system, increased the level of the ammonia-dependent enzyme. The glutamine-dependent asparagine synthetase was purified to 95%. It was a tetramer with four equal 57,000-dalton subunits and catalyzed the stoichiometric generation of asparagine, AMP, and inorganic pyrophosphate from aspartate, ATP, and glutamine. High levels of ammonium chloride (50 mM) could replace glutamine. The purified enzyme exhibited a substrate-independent glutaminase activity which was probably an artifact of purification. The tetramer could be dissociated; the monomer possessed the high ammonia-dependent activity and the glutaminase activity, but not the glutamine-dependent activity. In contrast, the purified ammonia-dependent asparagine synthetase, about 40% pure, had a molecular weight of 80,000 and is probably a dimer of identical subunits. Asparagine inhibited both enzymes. Kinetic constants and the effect of pH, substrate, and product analogs were determined. The regulation and biochemistry of the asparagine synthetases prove the hypothesis strongly suggested by the genetic and physiological evidence that a glutamine-dependent enzyme is essential for asparagine synthesis when the nitrogen source is growth rate limiting.  相似文献   

9.
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential bacterial enzyme with both an acetyltransferase and a uridyltransferase activity which have been mapped to the C-terminal and N-terminal domains, respectively. GlmU performs the last two steps in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), which is an essential precursor in both the peptidoglycan and the lipopolysaccharide metabolic pathways. GlmU is therefore an attractive target for potential antibiotics. Knowledge of its three-dimensional structure would provide a basis for rational drug design. We have determined the crystal structures of Streptococcus pneumoniae GlmU (SpGlmU) in apo form at 2.33 A resolution, and in complex with UDP-N-acetyl glucosamine and the essential co-factor Mg(2+) at 1.96 A resolution. The protein structure consists of an N-terminal domain with an alpha/beta-fold, containing the uridyltransferase active site, and a C-terminal domain with a long left-handed beta-sheet helix (LbetaH) domain. An insertion loop containing the highly conserved sequence motif Asn-Tyr-Asp-Gly protrudes from the left-handed beta-sheet helix domain. In the crystal, S. pneumoniae GlmU forms exact trimers, mainly through contacts between left-handed beta-sheet helix domains. UDP-N-acetylglucosamine and Mg(2+) are bound at the uridyltransferase active site, which is in a closed form. We propose a uridyltransferase mechanism in which the activation energy of the double negatively charged phosphorane transition state is lowered by charge compensation of Mg(2+) and the side-chain of Lys22.  相似文献   

10.
Site-specific mutagenesis was used to replace the N-terminal cysteine in human asparagine synthetase by an alanine. The mutant enzyme was expressed in the yeast Saccharomyces cerevisiae, and the asparagine synthetase activity was analyzed in vitro. The mutation resulted in the loss of the glutamine-dependent asparagine synthetase activity, while the ammonia-dependent activity remained unaffected. These results confirm the existence of a glutamine amidotransfer domain with an N-terminal cysteine essential for the glutamine-dependent asparagine synthetase activity.  相似文献   

11.
M Rizzi  C Nessi  A Mattevi  A Coda  M Bolognesi    A Galizzi 《The EMBO journal》1996,15(19):5125-5134
NAD+ synthetase catalyzes the last step in the biosynthesis of nicotinamide adenine dinucleotide. The three-dimensional structure of NH3-dependent NAD+ synthetase from Bacillus subtilis, in its free form and in complex with ATP, has been solved by X-ray crystallography (at 2.6 and 2.0 angstroms resolution, respectively) using a combination of multiple isomorphous replacement and density modification techniques. The enzyme consists of a tight homodimer with alpha/beta subunit topology. The catalytic site is located at the parallel beta-sheet topological switch point, where one AMP molecule, one pyrophosphate and one Mg2+ ion are observed. Residue Ser46, part of the neighboring 'P-loop', is hydrogen bonded to the pyrophosphate group, and may play a role in promoting the adenylation of deamido-NAD+ during the first step of the catalyzed reaction. The deamido-NAD+ binding site, located at the subunit interface, is occupied by one ATP molecule, pointing towards the catalytic center. A conserved structural fingerprint of the catalytic site, comprising Ser46, is very reminiscent of a related protein region observed in glutamine-dependent GMP synthetase, supporting the hypothesis that NAD+ synthetase belongs to the newly discovered family of 'N-type' ATP pyrophosphatases.  相似文献   

12.
A decrease of glutamine synthetase (E. C. 6.3.1.2.) activity was observed under the assimilation of ammonium nitrogen in Chlorella. At the same time a decrease of ATP content in Chlorella cells took place. The ATP content was 7-fold decreased, while ADP and AMP contents were 4-fold and 3-fold increased respectively, after 15 min. of Chlorella incubation on "ammonium" medium. Further incubation for 45 min, resulted in gradual increase of ATP content and in decrease of ADP and AMP contents. The value of energy charge in ammonium assimilating Chlorella cells sharply decreased for first 15 min. of incubation and then it normalized gradually. The experiments with glutamine synthetase preparation, isolated from ammonium assimilating cells, have shown that ADP and AMP are strong inhibitors of the enzyme in the presence of Mg2+, and only ADP produces the inhibitory effect in the presence of Mn2+. No enzyme reactivation was observed after the transfer of ammonium assimilating cells into nitrogen-free medium or nitrate medium, the enzyme activity increasing at the expense of enzyme protein synthesis denovo.  相似文献   

13.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

14.
Human P-glycoprotein, the MDR1 gene product, requires both Mg(2+)-ATP binding and hydrolysis to function as a drug transporter; however, the mechanism(s) defining these events is not understood. In the present study, we explored the nature of Mg(2+)-ATP binding in the N-terminal nucleotide-binding domain of human P-glycoprotein and identified the minimal functional unit required for specific ATP binding. Recombinant proteins encompassing amino acids within the region beginning at 348 and ending at 707 were expressed in Escherichia coli, purified from inclusion bodies under denaturing conditions, and renatured by rapid dilution. The ability of ATP to interact with these proteins was examined by use of the photoactive ATP analogue [alpha-(32)P]-8-azido-ATP. Photoaffinity labeling of recombinant proteins identified the region between amino acids 375 and 635 as the region necessary to obtain specific ATP-binding properties. Specific protein labeling was saturable, enhanced by Mg(2+), and inhibited by ATP. Recombinant proteins confined within the region beginning at amino acid 392 and ending at amino acid 590 demonstrated nonspecific [alpha-(32)P]-8-azido-ATP labeling. Nonspecific labeling was not enhanced by Mg(2+) and was inhibited only by high concentrations of ATP. Using a D555N mutated protein, we found that the conserved aspartate residue in the Walker B motif plays a role in magnesium-enhanced ATP-binding. Taken together, these data define the region of the N-terminal nucleotide-binding domain of P-glycoprotein that is required for specific ATP binding and suggest that magnesium may play a role in stabilizing the ATP-binding site.  相似文献   

15.
Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.  相似文献   

16.
Glutamine synthetase has been purified to homogeneity from cell extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The subunit molecular weight of the enzyme was determined as about 59,000 by sodium dodecyl sulfate gel electrophoresis. Electron micrographs of the Phormidium enzyme revealed a two-layered structure of regular hexagons (12 subunits per molecule), which markedly resembles the three-dimensional polypeptide backbone structure of the Salmonella typhimurium glutamine synthetase established by X-ray crystallography (Almassy, Janson, Hamlin, Xuong, & Eisenberg (1986) Nature 323, 304-309). The N-terminal amino acid sequence of the Phormidium enzyme shows very high similarity with that of the enzyme from an N2-fixing cyanobacterium, Anabaena 7120; 18 residues are common in 23 residues compared. Strong immunocross-reactions between the antibody against the purified Phormidium glutamine synthetase and other cyanobacterial enzymes except the Anacystis enzyme were observed. The apparent Michaelis constants for NH3, L-glutamate, and ATP were determined to be 0.29, 7.4, and 1.7 mM, respectively. Divalent metal ions such as Mg2+ and Mn2+ activated the enzyme in the biosynthetic reaction, whereas various amino acids and glutamate analogs strongly inhibited the enzyme.  相似文献   

17.
1. Carbamoyl phosphate synthetase was purified up to 45-fold from Alaska pea seedling (Pisum sativum L. cultivar Alaska). 2. The enzyme was most active with and had the lowest K(m) for l-glutamine as compared with NH(4) (+). 3. The purest preparations utilized very poorly or not at all l-asparagine and urea as nitrogen donors. 4. At saturating concentrations of components of the reaction, the K(m) for l-glutamine was 1.2x10(-4)m, and the K(m) for ATP was approx. 3.9x10(-4)m. 5. Although the enzyme was very labile, stability was improved by glutamine, asparagine, ammonium sulphate, dithiothreitol and especially l-ornithine. 6. Free ATP was markedly inhibitory, and MgATP(2-) and Mg(2+) appeared to be the actual substrates utilized. 7. Fe(2+) and Mn(2+) were also utilized, but not as readily as Mg(2+) except at low concentrations. K(+) increased activity significantly. 8. Of the four nucleotides tested (ITP, ATP, GTP and UTP) only ATP served as an effective phosphate donor.  相似文献   

18.
O'neal TD  Joy KW 《Plant physiology》1975,55(6):968-974
Of a variety of purine and pyrimidine nucleotides tested, only ADP and 5'AMP significantly inhibited the Mg(2+)-dependent activity of pea leaf glutamine synthetase. They were less effective inhibitors where Mn(2+) replaced Mg(2+). They were competitive inhibitors with respect to ATP, with inhibition constant (Ki) values of 1.2 and 1.8 mm, respectively. The energy charge significantly affects the activity of glutamine synthetase, especially with Mg(2+). Of a variety of amino acids tested, l-histidine and l-ornithine were the most inhibitory, but significant inhibition was seen only where Mn(2+) was present. Both amino acids appeared to compete with l-glutamate, and the Ki values were 1.9 mm for l-histidine (pH 6.2) and 7.8 mm for l-ornithine (pH 6.2). l-Alanine, glycine, and l-serine caused slight inhibition (Mn(2+)-dependent activity) and were not competitive with ATP or l-glutamate.Carbamyl phosphate was an effective inhibitor only when Mn(2+) was present, and did not compete with substrates. Inorganic phosphate and pyrophosphate caused significant inhibition of the Mg(2+)-dependent activity.  相似文献   

19.
CaVP (calcium vector protein) is a Ca(2+) sensor of the EF-hand protein family which is highly abundant in the muscle of Amphioxus. Its three-dimensional structure is not known, but according to the sequence analysis, the protein is composed of two domains, each containing a pair of EF-hand motifs. We determined recently the solution structure of the C-terminal domain (Trp81-Ser161) and characterized the large conformational and dynamic changes induced by Ca(2+) binding. In contrast, the N-terminal domain (Ala1-Asp86) has lost the capacity to bind the metal ion due to critical mutations and insertions in the two calcium loops. In this paper, we report the solution structure of the N-terminal domain and its backbone dynamics based on NMR spectroscopy, nuclear relaxation, and molecular modeling. The well-resolved three-dimensional structure is typical of a pair of EF-hand motifs, joined together by a short antiparallel beta-sheet. The tertiary arrangement of the two EF-hands results in a closed-type conformation, with near-antiparallel alpha-helices, similar to other EF-hand pairs in the absence of calcium ions. To characterize the internal dynamics of the protein, we measured the (15)N nuclear relaxation rates and the heteronuclear NOE effect in (15)N-labeled N-CaVP at a magnetic field of 11.74 T and 298 K. The domain is mainly monomeric in solution and undergoes an isotropic Brownian rotational diffusion with a correlation time of 7.1 ns, in good agreement with the fluorescence anisotropy decay measurements. Data analysis using a model-free procedure showed that the amide backbone groups in the alpha-helices and beta-strands undergo highly restricted movements on a picosecond to nanosecond time scale. The amide groups in Ca(2+) binding loops and in the linker fragment also display rapid fluctuations with slightly increased amplitudes.  相似文献   

20.
Asparagine synthetase was purified 240-fold from soybean (Glycine max (L.) Merr.) root nodules with a final recovery of 5% using Reactive Blue 2-crossed linked Agarose affinity gel chromatography. High levels of sulfhydryl protectants were required and the inclusion to glycerol and substrates in the extraction buffer helped to stabilize the enzyme. The final preparation had a specific activity of 3.77 mkat/kg protein when assayed at 30°C and was free of contaminating asparaginase activity. The enzyme had a broad pH maximum around pH 8.0 and apparent Km values for the substrates aspartate, Mg · ATP, and glutamine were 1.24 mM, 0.076 mM and 0.16 mM, respectively. Ammonium ion could partially replace glutamine as the nitrogen donor. Initial velocity patterns yielded parallel inverse plots with all substrate pairs suggesting an overall ping-pong reaction mechanism. Product inhibition patterns provided evidence that glutamine was the first substrate to bind to the enzyme and asparagine was the last product released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号